A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus

Fluid movement through uterine cell membranes is crucial, as it can modulate the tissue imbibition pattern in the different phases of the estrous cycle. To gain insight into the mechanisms underlying steroid-controlled water handling, the presence and distribution of aquaporins (AQPs), integral memb...

Full description

Saved in:
Bibliographic Details
Published inTheriogenology Vol. 72; no. 3; pp. 310 - 321
Main Authors Aralla, M., Borromeo, V., Groppetti, D., Secchi, C., Cremonesi, F., Arrighi, S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2009
[Oxford]: Butterworth-Heinemann; [New York]: Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fluid movement through uterine cell membranes is crucial, as it can modulate the tissue imbibition pattern in the different phases of the estrous cycle. To gain insight into the mechanisms underlying steroid-controlled water handling, the presence and distribution of aquaporins (AQPs), integral membrane channel proteins permitting rapid passive water movement, was explored in bitch uterine tissues. Immunohistochemistry and Western immunoblot analysis were used to study the presence of AQP1, AQP2, and AQP5 in the layers of the bitch uterine wall during the different estrous phases. Presence of endothelial nitric oxide–generating enzyme NO synthase (NOS3) was also investigated, as it is known that the vasodilator NOS3 might be involved in the development of uterine edema. The results demonstrated the following: (1) AQP1, AQP2, and AQP5 were present in the uterus of cycling bitches. (2) AQP1 was localized within uterine mesometrial, myometrial, and endometrial blood vessels and in the circular and longitudinal layers of myometrium. AQP1 localization and expression were unaffected by the estrous cycle. (3) The estrogenic milieu was probably at the basis of AQP2 expression in the glandular and luminal epithelium of the endometrium. (4) AQP5 water channels were present in the apical plasma membrane of uterine epithelial cells in coincidence with plasma progesterone increase. (5) NOS3 was localized in the myometrial and epithelial tissues as well as in blood vessels indicating a contribution of this vasoactive peptide to the uterine imbibition processes. Thus, we can hypothesize that a functional and distinctive collaboration exists among diverse AQPs in water handling during the different functional uterine phases.
Bibliography:http://dx.doi.org/10.1016/j.theriogenology.2009.01.023
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0093-691X
1879-3231
DOI:10.1016/j.theriogenology.2009.01.023