NB-IoT and Wi-Fi Technologies: An Integrated Approach to Enhance Portability of Smart Sensors

The Internet of Things paradigm has expanded the possibility of using sensors ubiquitously, particularly if connected to a cloud service for data sharing. There are several ways to connect sensors to the cloud: wearable or portable devices often lean on a smartphone that acts as a gateway, while oth...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 74589 - 74599
Main Authors Boni, Andrea, Bianchi, Valentina, Ricci, Andrea, De Munari, Ilaria
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Internet of Things paradigm has expanded the possibility of using sensors ubiquitously, particularly if connected to a cloud service for data sharing. There are several ways to connect sensors to the cloud: wearable or portable devices often lean on a smartphone that acts as a gateway, while other sensors, such as smart sensors for continuous monitoring (e.g. fall detectors) are connected through wireless networks covering a limited area (e.g. ZigBee or Wi-Fi). Their functionality can be improved using them in both outdoor and indoor environments without other devices. NB-IoT is a recently introduced wide-range protocol with a good compromise between low power, low deployment costs, payload length, and data rate. Traditionally, sensor nodes rely on only one type of radio: an innovative solution could be a sensor node exploiting a combination of different transmission technologies with the aim of achieving higher portability. In this paper, a hybrid solution based on NB-IoT/Wi-Fi is presented. The Wi-Fi connection is primarily selected due to its lower power consumption (compared to NB-IoT), while NB-IoT is activated only when a Wi-Fi network is not available. This study aims to evaluate the power consumption of the proposed solution with respect to single radio NB-IoT technology. Test boards have been implemented, and several data transmission tests have been carried out with both NB-IoT and Wi-Fi radios. Different received powers and payload lengths have been considered to analyze the impact on the energy profile of smart sensors. It has been demonstrated that using NB-IoT for both indoor and outdoor leads to an acceptable battery discharge time, with a strong dependence on the payload length. Under certain conditions, the proposed hybrid solution results in a battery duration up to two times higher than single-radio NB-IoT.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3082006