Accuracy of three-dimensional computational modeling in prediction of the dynamic neo left ventricular outflow tract with transcatheter mitral valve replacement
Transcatheter mitral valve replacement (TMVR) offers a valuable treatment option for inoperable patients suffering from a degenerated mitral valve after previous ring annuloplasty. Dynamic obstruction of the left ventricular outflow tract(LVOT) is a procedural risk with detrimental consequences and...
Saved in:
Published in | International journal of cardiology Vol. 336; pp. 93 - 96 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Transcatheter mitral valve replacement (TMVR) offers a valuable treatment option for inoperable patients suffering from a degenerated mitral valve after previous ring annuloplasty. Dynamic obstruction of the left ventricular outflow tract(LVOT) is a procedural risk with detrimental consequences and can be estimated upfront using a multi-slice computed tomography(MSCT) derived 3D computational model(3DCM). This study explored the accuracy of pre-procedural neo-LVOT prediction in TMVR using 3DCMs of multiple cardiac phases.
We obtained both pre- and post-procedural MSCT scans of a patient who underwent uncomplicated TMVR and derived 3DCMs from each cardiac phase. Virtual implantations of the deployed valve were performed and neo-LVOT dimensions were semi-automatically calculated in the pre-procedural models and matched with the post-procedural models. Predicted and post-procedural neo-LVOTs were compared between 3DCMs.
From cardiac phases 20–70%, 11 matched 3DCM pairs were generated. The mean difference between predicted and post-TMVR neo-LVOT area was 3 ± 23 mm2. The intra-class correlation coefficient for absolute agreement between predicted and post-procedural neo-LVOT area was 0.86 (95%CI 0.56–0.96, p < 0.001).
3DCMs could accurately predict post-TMVR neo-LVOT dimensions in a patient with a pre-existing mitral annular ring. Prospective research is warranted to demonstrate the accuracy of these models in larger samples and different mitral annular phenotypes.
•Dynamic LVOT obstruction is a notorious risk of TMVR.•A CT-derived 3D computational model(3DCM) might aid in procedural risk assessment.•The accuracy of multi-phase LVOT prediction post-TMVR using 3DCMs was examined.•3DCMs could accurately predict post-TMVR neo LVOT dimensions, however prospective research is required. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0167-5273 1874-1754 |
DOI: | 10.1016/j.ijcard.2021.05.002 |