sEMG-Based Gesture Recognition With Embedded Virtual Hand Poses and Adversarial Learning
To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based...
Saved in:
Published in | IEEE access Vol. 7; pp. 104108 - 104120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based on the adversarial learning to capture the intrinsic relationship between the sEMG signals and the hand poses. We report comprehensive evaluations of the proposed approach for both frame- and window-based sEMG gesture recognitions on seven-sparse-multichannel and four-high-density-benchmark databases. The experimental results show that the proposed approach achieves significant improvements in sEMG-based gesture recognition compared to existing works. For frame-based sEMG gesture recognition, the recognition accuracy of the proposed framework is increased by an average of +5.2% on the sparse multichannel sEMG databases and by an average of +6.7% on the high-density sEMG databases compared to the existing methods. For window-based sEMG gesture recognition, the state-of-the-art recognition accuracies on three of the high-density sEMG databases are already higher than 99%, i.e., almost saturated; nevertheless, we achieve a +0.2% improvement. For the remaining eight sEMG databases, the average improvement with the proposed framework for the window-based approach is +2.5%. |
---|---|
AbstractList | To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based on the adversarial learning to capture the intrinsic relationship between the sEMG signals and the hand poses. We report comprehensive evaluations of the proposed approach for both frame- and window-based sEMG gesture recognitions on seven-sparse-multichannel and four-high-density-benchmark databases. The experimental results show that the proposed approach achieves significant improvements in sEMG-based gesture recognition compared to existing works. For frame-based sEMG gesture recognition, the recognition accuracy of the proposed framework is increased by an average of +5.2% on the sparse multichannel sEMG databases and by an average of +6.7% on the high-density sEMG databases compared to the existing methods. For window-based sEMG gesture recognition, the state-of-the-art recognition accuracies on three of the high-density sEMG databases are already higher than 99%, i.e., almost saturated; nevertheless, we achieve a +0.2% improvement. For the remaining eight sEMG databases, the average improvement with the proposed framework for the window-based approach is +2.5%. |
Author | Geng, Weidong Li, Xiangdong Dai, Qingfeng Kankanhalli, Mohan Wong, Yongkang Hu, Yu |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-6302-3539 surname: Hu fullname: Hu, Yu organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Yongkang surname: Wong fullname: Wong, Yongkang organization: School of Computing, National University of Singapore, Singapore – sequence: 3 givenname: Qingfeng surname: Dai fullname: Dai, Qingfeng organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Mohan surname: Kankanhalli fullname: Kankanhalli, Mohan organization: School of Computing, National University of Singapore, Singapore – sequence: 5 givenname: Weidong surname: Geng fullname: Geng, Weidong email: gengwd@zju.edu.cn organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 6 givenname: Xiangdong surname: Li fullname: Li, Xiangdong email: axli@zju.edu.cn organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China |
BookMark | eNqFUU1vEzEQtVCRKKW_oJeVOG_w-HN9DFFIKwWBKF83y_bOBkfputibSvx7HLaqEBdO8zTz3pvRvJfkbEwjEnIFdAFAzZvlarW-vV0wCmbBDKeUymfknIEyLZdcnf2FX5DLUvaVQbvakvqcfC_r95v2rSvYNxss0zFj8wlD2o1ximlsvsXpR7O-89j3lfE15unoDs21G_vmYypYmhNa9g-Yi8uxjrbo8hjH3SvyfHCHgpeP9YJ8ebf-vLputx82N6vltg2CdlMbnHYe9ABcCSG9l2AEdVAhGAidko56j4MBo6kGjdTAIIx3XQd-kNzzC3Iz-_bJ7e19jncu_7LJRfunkfLOujzFcEALioEGzwMTvWAKnPSMcQyCM48i8Or1eva6z-nnsX7D7tMxj_V8y4SUioPpZGXxmRVyKiXj8LQVqD0lYudE7CkR-5hIVZl_VCFO7vTjKbt4-I_2atZGRHza1mmljGb8N1hpmOs |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_bioengineering10091101 crossref_primary_10_1038_s41598_024_82676_1 crossref_primary_10_1109_JBHI_2023_3289548 crossref_primary_10_1109_TBCAS_2022_3222196 crossref_primary_10_1109_TNSRE_2023_3236982 crossref_primary_10_3390_s21186147 crossref_primary_10_1109_ACCESS_2020_2986473 crossref_primary_10_1016_j_bspc_2020_102345 crossref_primary_10_1109_TBCAS_2022_3211424 crossref_primary_10_1109_TIM_2023_3307768 crossref_primary_10_1016_j_promfg_2020_05_131 crossref_primary_10_1155_2022_6488599 crossref_primary_10_3389_fbioe_2024_1329209 crossref_primary_10_1007_s12652_022_03753_9 crossref_primary_10_1007_s11760_024_03668_2 crossref_primary_10_1016_j_sna_2021_113025 crossref_primary_10_1109_JSEN_2023_3264646 |
Cites_doi | 10.1371/journal.pone.0206049 10.1186/s12984-017-0284-4 10.1109/10.204774 10.1016/j.bspc.2009.02.004 10.1109/CVPR.2018.00143 10.1109/ICCV.2017.629 10.1038/srep36571 10.1007/978-3-319-00846-2_188 10.1109/TNSRE.2019.2896269 10.1007/s10586-018-1844-5 10.1016/j.bspc.2015.02.009 10.1016/j.patrec.2017.05.016 10.1145/1378773.1378778 10.1109/TNSRE.2017.2687520 10.1109/ACCESS.2017.2684186 10.1016/j.patrec.2017.12.005 10.1109/ACCESS.2018.2887223 10.24963/ijcai.2017/225 10.1109/ROBIO.2009.4913110 10.3389/fnbot.2016.00009 10.1016/j.promfg.2018.07.152 10.3389/fnins.2017.00379 10.1007/s12559-016-9388-6 10.1109/TSMCC.2007.893280 10.1109/ICASSP.2019.8682383 10.1109/ACCESS.2017.2764471 10.1109/ISACV.2018.8354080 10.3390/s17030458 10.1109/TII.2017.2779814 10.1109/URAI.2016.7734026 10.1109/TBME.2003.818469 10.1109/ICORR.2017.8009405 10.1109/SMC.2017.8122854 10.3390/bdcc2030021 10.1109/ICPR.2014.477 10.1006/cbmr.1999.1524 10.1145/3126686.3126723 10.1251/bpo115 10.1007/s11280-018-0541-x 10.1016/j.eswa.2012.01.102 10.1109/ACCESS.2019.2906584 10.1109/TNSRE.2017.2687761 10.1109/TPAMI.2018.2798607 10.1109/TNSRE.2016.2563222 10.1109/TBME.2019.2899222 10.1109/SSCI.2017.8280908 10.3390/s140406474 10.1109/BIOROB.2016.7523681 10.1371/journal.pone.0186132 10.1145/2702123.2702501 10.1371/journal.pone.0160817 10.1007/s10846-017-0725-0 10.1371/journal.pone.0062956 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2930005 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 104120 |
ExternalDocumentID | oai_doaj_org_article_162171b3c24d4261a5b223ec432be4c3 10_1109_ACCESS_2019_2930005 8766972 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2016YFB1001302 funderid: 10.13039/501100012166 – fundername: National Research Foundation Singapore funderid: 10.13039/501100001381 – fundername: National Natural Science Foundation of China grantid: 61379067 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-ca7ab17f136445bb51940a145b191c865a0bbef91970717e091f49ba881bf53b3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:16:28 EDT 2025 Mon Jun 30 02:25:57 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Tue Jul 01 02:41:43 EDT 2025 Wed Aug 27 08:33:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-ca7ab17f136445bb51940a145b191c865a0bbef91970717e091f49ba881bf53b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6302-3539 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8766972 |
PQID | 2455631985 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2455631985 crossref_citationtrail_10_1109_ACCESS_2019_2930005 doaj_primary_oai_doaj_org_article_162171b3c24d4261a5b223ec432be4c3 crossref_primary_10_1109_ACCESS_2019_2930005 ieee_primary_8766972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref14 ref53 ref52 ref11 ref10 ref16 ref19 ref18 atzori (ref17) 2014; 1 ref51 moon (ref3) 2003 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 reed (ref47) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 hao (ref50) 2018 ref29 mirza (ref55) 2014 chattopadhyay (ref58) 2011 ref60 goodfellow (ref54) 2014 |
References_xml | – ident: ref16 doi: 10.1371/journal.pone.0206049 – ident: ref22 doi: 10.1186/s12984-017-0284-4 – ident: ref11 doi: 10.1109/10.204774 – ident: ref39 doi: 10.1016/j.bspc.2009.02.004 – year: 2014 ident: ref55 article-title: Conditional generative adversarial nets publication-title: arXiv 1411 1784 – ident: ref49 doi: 10.1109/CVPR.2018.00143 – ident: ref48 doi: 10.1109/ICCV.2017.629 – ident: ref12 doi: 10.1038/srep36571 – start-page: 6886 year: 2018 ident: ref50 article-title: Cmcgan: A uniform framework for cross-modal visual-audio mutual generation publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref40 doi: 10.1007/978-3-319-00846-2_188 – ident: ref60 doi: 10.1109/TNSRE.2019.2896269 – ident: ref33 doi: 10.1007/s10586-018-1844-5 – ident: ref1 doi: 10.1016/j.bspc.2015.02.009 – ident: ref30 doi: 10.1016/j.patrec.2017.05.016 – start-page: 4 year: 2011 ident: ref58 article-title: Topology preserving domain adaptation for addressing subject based variability in semg signal publication-title: Proc AAAI Spring Symp – ident: ref44 doi: 10.1145/1378773.1378778 – ident: ref38 doi: 10.1109/TNSRE.2017.2687520 – ident: ref29 doi: 10.1109/ACCESS.2017.2684186 – ident: ref45 doi: 10.1016/j.patrec.2017.12.005 – ident: ref32 doi: 10.1109/ACCESS.2018.2887223 – ident: ref13 doi: 10.24963/ijcai.2017/225 – ident: ref9 doi: 10.1109/ROBIO.2009.4913110 – volume: 1 year: 2014 ident: ref17 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Data Science Journal – ident: ref14 doi: 10.3389/fnbot.2016.00009 – ident: ref25 doi: 10.1016/j.promfg.2018.07.152 – ident: ref15 doi: 10.3389/fnins.2017.00379 – ident: ref28 doi: 10.1007/s12559-016-9388-6 – ident: ref27 doi: 10.1109/TSMCC.2007.893280 – ident: ref52 doi: 10.1109/ICASSP.2019.8682383 – ident: ref31 doi: 10.1109/ACCESS.2017.2764471 – ident: ref53 doi: 10.1109/ISACV.2018.8354080 – ident: ref23 doi: 10.3390/s17030458 – ident: ref8 doi: 10.1109/TII.2017.2779814 – ident: ref19 doi: 10.1109/URAI.2016.7734026 – ident: ref2 doi: 10.1109/TBME.2003.818469 – ident: ref21 doi: 10.1109/ICORR.2017.8009405 – ident: ref59 doi: 10.1109/SMC.2017.8122854 – year: 2016 ident: ref47 article-title: Generative adversarial text to image synthesis publication-title: arXiv 1605 05396 – ident: ref35 doi: 10.3390/bdcc2030021 – ident: ref41 doi: 10.1109/ICPR.2014.477 – ident: ref4 doi: 10.1006/cbmr.1999.1524 – ident: ref51 doi: 10.1145/3126686.3126723 – ident: ref34 doi: 10.1251/bpo115 – ident: ref46 doi: 10.1007/s11280-018-0541-x – ident: ref37 doi: 10.1016/j.eswa.2012.01.102 – start-page: 2672 year: 2014 ident: ref54 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref36 doi: 10.1109/ACCESS.2019.2906584 – ident: ref42 doi: 10.1109/TNSRE.2017.2687761 – ident: ref57 doi: 10.1109/TPAMI.2018.2798607 – ident: ref43 doi: 10.1109/TNSRE.2016.2563222 – ident: ref7 doi: 10.1109/TBME.2019.2899222 – start-page: 3453 year: 2003 ident: ref3 article-title: Intelligent robotic wheelchair with EMG-, gesture-, and voice-based interfaces publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst – ident: ref24 doi: 10.1109/SSCI.2017.8280908 – ident: ref10 doi: 10.3390/s140406474 – ident: ref18 doi: 10.1109/BIOROB.2016.7523681 – ident: ref20 doi: 10.1371/journal.pone.0186132 – ident: ref56 doi: 10.1145/2702123.2702501 – ident: ref5 doi: 10.1371/journal.pone.0160817 – ident: ref26 doi: 10.1007/s10846-017-0725-0 – ident: ref6 doi: 10.1371/journal.pone.0062956 |
SSID | ssj0000816957 |
Score | 2.2462037 |
Snippet | To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104108 |
SubjectTerms | Assistive technology Density Electrodes Feature extraction generative adversarial learning Gesture recognition Hand gesture recognition Learning Machine learning myoelectric control surface electromyography (sEMG) User experience virtual hand pose |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnmK8lANHCk2bdM0RpsGEBEKIx25RnKaABB1at_-P3WbTEBJc6Cmq0jSxXftzlXxm7DhxoIlXKiLuuYjOWkcaII-KXGca9Y9Bh84O39xmg0d5PVTDhVJftCespQduBXcmMgTNAlKXyILgvlWAEc07mSbgpWt4PjHmLSRTjQ_ORaZVN9AMiVifnfd6uCLay6VPMcQRVvkWihrG_lBi5YdfboLN5TpbCyiRn7ez22BLvtpkqwvcgVtsWPdvrqILDEIFv8IhpmPP72e7gUYVf36bvPL-B3j0LAV_ehvTQRE-sFXB70a1rzm1mnLMtSUj5IFp9WWbPV72H3qDKJRJiJyM80nkbNeC6JYiRWyjABCTydgKbGIu5vJM2RjAl1roLiVvHqVVSg02R8RaqhTSHbZcjSq_y3hcOq-kVSWiPIkXJNJChnoGlTgvfYclM4kZFzjEqZTFu2lyiVibVsyGxGyCmDvsZP7QZ0uh8Xv3C1LFvCvxXzc30CpMsArzl1V02BYpcj4I-nw0vaTDDmaKNeFbrU0iiSRN6Fzt_cer99kKLaf9TXPAlifjqT9E4DKBo8ZGvwCv6-PT priority: 102 providerName: Directory of Open Access Journals |
Title | sEMG-Based Gesture Recognition With Embedded Virtual Hand Poses and Adversarial Learning |
URI | https://ieeexplore.ieee.org/document/8766972 https://www.proquest.com/docview/2455631985 https://doaj.org/article/162171b3c24d4261a5b223ec432be4c3 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuDAqyAWSuUDx2abh52Nj-1q2xXSIoQo7M3yOA5UhSzaZC_8emYcb8RLiJysyIkcfWPPN47nG4BXuUPNulIJa88lnGudaMQqqStdasKfnA7nDq_elMtr-Xqt1gdwOubCeO_D4TM_5Wb4l19v3I63ys5o5tILaMG9Q4HbkKs17qdwAQmtZlFYKEv12fl8Tt_Ap7f0lJwas5NfnE_Q6I9FVf5YiYN7uXwAq_3AhlMlt9Ndj1P3_TfNxv8d-UO4H3mmOB8M4xEc-PYx3PtJffAI1t1idZVckBurxRUNabf14t3-PNGmFR9v-s9i8RU9rU21-HCz5VQTsbRtLd5uOt8JboWCzp1lMxZRq_XTE7i-XLyfL5NYaCFxMq36xNmZxWzWZAWxI4VIrE6mNqMmRXOuKpVNEX2jMz3j8M8Tx2ikRlsR521UgcVTOGw3rX8GIm2cV9KqhniipAtzabEkS0GVOy_9BPI9AsZFFXIuhvHFhGgk1WaAzTBsJsI2gdPxoW-DCMe_u18wtGNXVtAONwgSEyekyUoKxjIsXC5rDiOtQmJK3skiRy9dMYEjhnF8SURwAsd7QzFxtncmlyyzlulKPf_7Uy_gLg9w2Lo5hsN-u_Mvicz0eBI2AU6CLf8AmnfvVg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcyqMgFgr4wLHZ5mFn42O72naBboVQC3uzPI4DFSWLNtkLv56ZxBvxEiInK3IiR9_Y843j-QbgVepQs65UxNpzEedaRxqxiMpC55rwJ6fDucOLi3x-Jd8s1XIHDodcGO99d_jMj7nZ_csvV27DW2VHNHPpBbTg3iK_r5I-W2vYUeESElpNgrRQEuuj4-mUvoLPb-kxuTXmJ7-4n06lP5RV-WMt7hzM6T1YbIfWnyv5Mt60OHbff1Nt_N-x34e9wDTFcW8aD2DH1w_h7k_6g_uwbGaLs-iEHFkpzmhIm7UX77cnila1-Hjdfhazr-hpdSrFh-s1J5uIua1L8W7V-EZwqyvp3Fg2ZBHUWj89gqvT2eV0HoVSC5GTcdFGzk4sJpMqyYgfKUTidTK2CTUpnnNFrmyM6Cud6AkHgJ5YRiU12oJYb6UyzB7Dbr2q_RMQceW8klZVxBQlXZhKiznZCqrUeelHkG4RMC7okHM5jBvTxSOxNj1shmEzAbYRHA4PfetlOP7d_YShHbqyhnZ3gyAxYUqaJKdwLMHMpbLkQNIqJK7kncxS9NJlI9hnGIeXBARHcLA1FBPme2NSyUJriS7U078_9RJuzy8X5-b89cXbZ3CHB9tv5BzAbrve-OdEbVp80Vn0D5XN8ao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sEMG-Based+Gesture+Recognition+With+Embedded+Virtual+Hand+Poses+and+Adversarial+Learning&rft.jtitle=IEEE+access&rft.au=Hu%2C+Yu&rft.au=Wong%2C+Yongkang&rft.au=Dai%2C+Qingfeng&rft.au=Kankanhalli%2C+Mohan&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=104108&rft.epage=104120&rft_id=info:doi/10.1109%2FACCESS.2019.2930005&rft.externalDocID=8766972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |