sEMG-Based Gesture Recognition With Embedded Virtual Hand Poses and Adversarial Learning

To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 104108 - 104120
Main Authors Hu, Yu, Wong, Yongkang, Dai, Qingfeng, Kankanhalli, Mohan, Geng, Weidong, Li, Xiangdong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based on the adversarial learning to capture the intrinsic relationship between the sEMG signals and the hand poses. We report comprehensive evaluations of the proposed approach for both frame- and window-based sEMG gesture recognitions on seven-sparse-multichannel and four-high-density-benchmark databases. The experimental results show that the proposed approach achieves significant improvements in sEMG-based gesture recognition compared to existing works. For frame-based sEMG gesture recognition, the recognition accuracy of the proposed framework is increased by an average of +5.2% on the sparse multichannel sEMG databases and by an average of +6.7% on the high-density sEMG databases compared to the existing methods. For window-based sEMG gesture recognition, the state-of-the-art recognition accuracies on three of the high-density sEMG databases are already higher than 99%, i.e., almost saturated; nevertheless, we achieve a +0.2% improvement. For the remaining eight sEMG databases, the average improvement with the proposed framework for the window-based approach is +2.5%.
AbstractList To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based on the adversarial learning to capture the intrinsic relationship between the sEMG signals and the hand poses. We report comprehensive evaluations of the proposed approach for both frame- and window-based sEMG gesture recognitions on seven-sparse-multichannel and four-high-density-benchmark databases. The experimental results show that the proposed approach achieves significant improvements in sEMG-based gesture recognition compared to existing works. For frame-based sEMG gesture recognition, the recognition accuracy of the proposed framework is increased by an average of +5.2% on the sparse multichannel sEMG databases and by an average of +6.7% on the high-density sEMG databases compared to the existing methods. For window-based sEMG gesture recognition, the state-of-the-art recognition accuracies on three of the high-density sEMG databases are already higher than 99%, i.e., almost saturated; nevertheless, we achieve a +0.2% improvement. For the remaining eight sEMG databases, the average improvement with the proposed framework for the window-based approach is +2.5%.
Author Geng, Weidong
Li, Xiangdong
Dai, Qingfeng
Kankanhalli, Mohan
Wong, Yongkang
Hu, Yu
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-6302-3539
  surname: Hu
  fullname: Hu, Yu
  organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Yongkang
  surname: Wong
  fullname: Wong, Yongkang
  organization: School of Computing, National University of Singapore, Singapore
– sequence: 3
  givenname: Qingfeng
  surname: Dai
  fullname: Dai, Qingfeng
  organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Mohan
  surname: Kankanhalli
  fullname: Kankanhalli, Mohan
  organization: School of Computing, National University of Singapore, Singapore
– sequence: 5
  givenname: Weidong
  surname: Geng
  fullname: Geng, Weidong
  email: gengwd@zju.edu.cn
  organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Xiangdong
  surname: Li
  fullname: Li, Xiangdong
  email: axli@zju.edu.cn
  organization: State Key Laboratory of CAD & CG, College of Computer Science and Technology, Zhejiang University, Hangzhou, China
BookMark eNqFUU1vEzEQtVCRKKW_oJeVOG_w-HN9DFFIKwWBKF83y_bOBkfputibSvx7HLaqEBdO8zTz3pvRvJfkbEwjEnIFdAFAzZvlarW-vV0wCmbBDKeUymfknIEyLZdcnf2FX5DLUvaVQbvakvqcfC_r95v2rSvYNxss0zFj8wlD2o1ximlsvsXpR7O-89j3lfE15unoDs21G_vmYypYmhNa9g-Yi8uxjrbo8hjH3SvyfHCHgpeP9YJ8ebf-vLputx82N6vltg2CdlMbnHYe9ABcCSG9l2AEdVAhGAidko56j4MBo6kGjdTAIIx3XQd-kNzzC3Iz-_bJ7e19jncu_7LJRfunkfLOujzFcEALioEGzwMTvWAKnPSMcQyCM48i8Or1eva6z-nnsX7D7tMxj_V8y4SUioPpZGXxmRVyKiXj8LQVqD0lYudE7CkR-5hIVZl_VCFO7vTjKbt4-I_2atZGRHza1mmljGb8N1hpmOs
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_bioengineering10091101
crossref_primary_10_1038_s41598_024_82676_1
crossref_primary_10_1109_JBHI_2023_3289548
crossref_primary_10_1109_TBCAS_2022_3222196
crossref_primary_10_1109_TNSRE_2023_3236982
crossref_primary_10_3390_s21186147
crossref_primary_10_1109_ACCESS_2020_2986473
crossref_primary_10_1016_j_bspc_2020_102345
crossref_primary_10_1109_TBCAS_2022_3211424
crossref_primary_10_1109_TIM_2023_3307768
crossref_primary_10_1016_j_promfg_2020_05_131
crossref_primary_10_1155_2022_6488599
crossref_primary_10_3389_fbioe_2024_1329209
crossref_primary_10_1007_s12652_022_03753_9
crossref_primary_10_1007_s11760_024_03668_2
crossref_primary_10_1016_j_sna_2021_113025
crossref_primary_10_1109_JSEN_2023_3264646
Cites_doi 10.1371/journal.pone.0206049
10.1186/s12984-017-0284-4
10.1109/10.204774
10.1016/j.bspc.2009.02.004
10.1109/CVPR.2018.00143
10.1109/ICCV.2017.629
10.1038/srep36571
10.1007/978-3-319-00846-2_188
10.1109/TNSRE.2019.2896269
10.1007/s10586-018-1844-5
10.1016/j.bspc.2015.02.009
10.1016/j.patrec.2017.05.016
10.1145/1378773.1378778
10.1109/TNSRE.2017.2687520
10.1109/ACCESS.2017.2684186
10.1016/j.patrec.2017.12.005
10.1109/ACCESS.2018.2887223
10.24963/ijcai.2017/225
10.1109/ROBIO.2009.4913110
10.3389/fnbot.2016.00009
10.1016/j.promfg.2018.07.152
10.3389/fnins.2017.00379
10.1007/s12559-016-9388-6
10.1109/TSMCC.2007.893280
10.1109/ICASSP.2019.8682383
10.1109/ACCESS.2017.2764471
10.1109/ISACV.2018.8354080
10.3390/s17030458
10.1109/TII.2017.2779814
10.1109/URAI.2016.7734026
10.1109/TBME.2003.818469
10.1109/ICORR.2017.8009405
10.1109/SMC.2017.8122854
10.3390/bdcc2030021
10.1109/ICPR.2014.477
10.1006/cbmr.1999.1524
10.1145/3126686.3126723
10.1251/bpo115
10.1007/s11280-018-0541-x
10.1016/j.eswa.2012.01.102
10.1109/ACCESS.2019.2906584
10.1109/TNSRE.2017.2687761
10.1109/TPAMI.2018.2798607
10.1109/TNSRE.2016.2563222
10.1109/TBME.2019.2899222
10.1109/SSCI.2017.8280908
10.3390/s140406474
10.1109/BIOROB.2016.7523681
10.1371/journal.pone.0186132
10.1145/2702123.2702501
10.1371/journal.pone.0160817
10.1007/s10846-017-0725-0
10.1371/journal.pone.0062956
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2930005
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 104120
ExternalDocumentID oai_doaj_org_article_162171b3c24d4261a5b223ec432be4c3
10_1109_ACCESS_2019_2930005
8766972
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2016YFB1001302
  funderid: 10.13039/501100012166
– fundername: National Research Foundation Singapore
  funderid: 10.13039/501100001381
– fundername: National Natural Science Foundation of China
  grantid: 61379067
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-ca7ab17f136445bb51940a145b191c865a0bbef91970717e091f49ba881bf53b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:16:28 EDT 2025
Mon Jun 30 02:25:57 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Tue Jul 01 02:41:43 EDT 2025
Wed Aug 27 08:33:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-ca7ab17f136445bb51940a145b191c865a0bbef91970717e091f49ba881bf53b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6302-3539
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8766972
PQID 2455631985
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_2455631985
crossref_citationtrail_10_1109_ACCESS_2019_2930005
doaj_primary_oai_doaj_org_article_162171b3c24d4261a5b223ec432be4c3
crossref_primary_10_1109_ACCESS_2019_2930005
ieee_primary_8766972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref14
ref53
ref52
ref11
ref10
ref16
ref19
ref18
atzori (ref17) 2014; 1
ref51
moon (ref3) 2003
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
reed (ref47) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
hao (ref50) 2018
ref29
mirza (ref55) 2014
chattopadhyay (ref58) 2011
ref60
goodfellow (ref54) 2014
References_xml – ident: ref16
  doi: 10.1371/journal.pone.0206049
– ident: ref22
  doi: 10.1186/s12984-017-0284-4
– ident: ref11
  doi: 10.1109/10.204774
– ident: ref39
  doi: 10.1016/j.bspc.2009.02.004
– year: 2014
  ident: ref55
  article-title: Conditional generative adversarial nets
  publication-title: arXiv 1411 1784
– ident: ref49
  doi: 10.1109/CVPR.2018.00143
– ident: ref48
  doi: 10.1109/ICCV.2017.629
– ident: ref12
  doi: 10.1038/srep36571
– start-page: 6886
  year: 2018
  ident: ref50
  article-title: Cmcgan: A uniform framework for cross-modal visual-audio mutual generation
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref40
  doi: 10.1007/978-3-319-00846-2_188
– ident: ref60
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref33
  doi: 10.1007/s10586-018-1844-5
– ident: ref1
  doi: 10.1016/j.bspc.2015.02.009
– ident: ref30
  doi: 10.1016/j.patrec.2017.05.016
– start-page: 4
  year: 2011
  ident: ref58
  article-title: Topology preserving domain adaptation for addressing subject based variability in semg signal
  publication-title: Proc AAAI Spring Symp
– ident: ref44
  doi: 10.1145/1378773.1378778
– ident: ref38
  doi: 10.1109/TNSRE.2017.2687520
– ident: ref29
  doi: 10.1109/ACCESS.2017.2684186
– ident: ref45
  doi: 10.1016/j.patrec.2017.12.005
– ident: ref32
  doi: 10.1109/ACCESS.2018.2887223
– ident: ref13
  doi: 10.24963/ijcai.2017/225
– ident: ref9
  doi: 10.1109/ROBIO.2009.4913110
– volume: 1
  year: 2014
  ident: ref17
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Data Science Journal
– ident: ref14
  doi: 10.3389/fnbot.2016.00009
– ident: ref25
  doi: 10.1016/j.promfg.2018.07.152
– ident: ref15
  doi: 10.3389/fnins.2017.00379
– ident: ref28
  doi: 10.1007/s12559-016-9388-6
– ident: ref27
  doi: 10.1109/TSMCC.2007.893280
– ident: ref52
  doi: 10.1109/ICASSP.2019.8682383
– ident: ref31
  doi: 10.1109/ACCESS.2017.2764471
– ident: ref53
  doi: 10.1109/ISACV.2018.8354080
– ident: ref23
  doi: 10.3390/s17030458
– ident: ref8
  doi: 10.1109/TII.2017.2779814
– ident: ref19
  doi: 10.1109/URAI.2016.7734026
– ident: ref2
  doi: 10.1109/TBME.2003.818469
– ident: ref21
  doi: 10.1109/ICORR.2017.8009405
– ident: ref59
  doi: 10.1109/SMC.2017.8122854
– year: 2016
  ident: ref47
  article-title: Generative adversarial text to image synthesis
  publication-title: arXiv 1605 05396
– ident: ref35
  doi: 10.3390/bdcc2030021
– ident: ref41
  doi: 10.1109/ICPR.2014.477
– ident: ref4
  doi: 10.1006/cbmr.1999.1524
– ident: ref51
  doi: 10.1145/3126686.3126723
– ident: ref34
  doi: 10.1251/bpo115
– ident: ref46
  doi: 10.1007/s11280-018-0541-x
– ident: ref37
  doi: 10.1016/j.eswa.2012.01.102
– start-page: 2672
  year: 2014
  ident: ref54
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref36
  doi: 10.1109/ACCESS.2019.2906584
– ident: ref42
  doi: 10.1109/TNSRE.2017.2687761
– ident: ref57
  doi: 10.1109/TPAMI.2018.2798607
– ident: ref43
  doi: 10.1109/TNSRE.2016.2563222
– ident: ref7
  doi: 10.1109/TBME.2019.2899222
– start-page: 3453
  year: 2003
  ident: ref3
  article-title: Intelligent robotic wheelchair with EMG-, gesture-, and voice-based interfaces
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst
– ident: ref24
  doi: 10.1109/SSCI.2017.8280908
– ident: ref10
  doi: 10.3390/s140406474
– ident: ref18
  doi: 10.1109/BIOROB.2016.7523681
– ident: ref20
  doi: 10.1371/journal.pone.0186132
– ident: ref56
  doi: 10.1145/2702123.2702501
– ident: ref5
  doi: 10.1371/journal.pone.0160817
– ident: ref26
  doi: 10.1007/s10846-017-0725-0
– ident: ref6
  doi: 10.1371/journal.pone.0062956
SSID ssj0000816957
Score 2.2462037
Snippet To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104108
SubjectTerms Assistive technology
Density
Electrodes
Feature extraction
generative adversarial learning
Gesture recognition
Hand gesture recognition
Learning
Machine learning
myoelectric control
surface electromyography (sEMG)
User experience
virtual hand pose
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QJzggnmK8lANHCk2bdM0RpsGEBEKIx25RnKaABB1at_-P3WbTEBJc6Cmq0jSxXftzlXxm7DhxoIlXKiLuuYjOWkcaII-KXGca9Y9Bh84O39xmg0d5PVTDhVJftCespQduBXcmMgTNAlKXyILgvlWAEc07mSbgpWt4PjHmLSRTjQ_ORaZVN9AMiVifnfd6uCLay6VPMcQRVvkWihrG_lBi5YdfboLN5TpbCyiRn7ez22BLvtpkqwvcgVtsWPdvrqILDEIFv8IhpmPP72e7gUYVf36bvPL-B3j0LAV_ehvTQRE-sFXB70a1rzm1mnLMtSUj5IFp9WWbPV72H3qDKJRJiJyM80nkbNeC6JYiRWyjABCTydgKbGIu5vJM2RjAl1roLiVvHqVVSg02R8RaqhTSHbZcjSq_y3hcOq-kVSWiPIkXJNJChnoGlTgvfYclM4kZFzjEqZTFu2lyiVibVsyGxGyCmDvsZP7QZ0uh8Xv3C1LFvCvxXzc30CpMsArzl1V02BYpcj4I-nw0vaTDDmaKNeFbrU0iiSRN6Fzt_cer99kKLaf9TXPAlifjqT9E4DKBo8ZGvwCv6-PT
  priority: 102
  providerName: Directory of Open Access Journals
Title sEMG-Based Gesture Recognition With Embedded Virtual Hand Poses and Adversarial Learning
URI https://ieeexplore.ieee.org/document/8766972
https://www.proquest.com/docview/2455631985
https://doaj.org/article/162171b3c24d4261a5b223ec432be4c3
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuDAqyAWSuUDx2abh52Nj-1q2xXSIoQo7M3yOA5UhSzaZC_8emYcb8RLiJysyIkcfWPPN47nG4BXuUPNulIJa88lnGudaMQqqStdasKfnA7nDq_elMtr-Xqt1gdwOubCeO_D4TM_5Wb4l19v3I63ys5o5tILaMG9Q4HbkKs17qdwAQmtZlFYKEv12fl8Tt_Ap7f0lJwas5NfnE_Q6I9FVf5YiYN7uXwAq_3AhlMlt9Ndj1P3_TfNxv8d-UO4H3mmOB8M4xEc-PYx3PtJffAI1t1idZVckBurxRUNabf14t3-PNGmFR9v-s9i8RU9rU21-HCz5VQTsbRtLd5uOt8JboWCzp1lMxZRq_XTE7i-XLyfL5NYaCFxMq36xNmZxWzWZAWxI4VIrE6mNqMmRXOuKpVNEX2jMz3j8M8Tx2ikRlsR521UgcVTOGw3rX8GIm2cV9KqhniipAtzabEkS0GVOy_9BPI9AsZFFXIuhvHFhGgk1WaAzTBsJsI2gdPxoW-DCMe_u18wtGNXVtAONwgSEyekyUoKxjIsXC5rDiOtQmJK3skiRy9dMYEjhnF8SURwAsd7QzFxtncmlyyzlulKPf_7Uy_gLg9w2Lo5hsN-u_Mvicz0eBI2AU6CLf8AmnfvVg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAcyqMgFgr4wLHZ5mFn42O72naBboVQC3uzPI4DFSWLNtkLv56ZxBvxEiInK3IiR9_Y843j-QbgVepQs65UxNpzEedaRxqxiMpC55rwJ6fDucOLi3x-Jd8s1XIHDodcGO99d_jMj7nZ_csvV27DW2VHNHPpBbTg3iK_r5I-W2vYUeESElpNgrRQEuuj4-mUvoLPb-kxuTXmJ7-4n06lP5RV-WMt7hzM6T1YbIfWnyv5Mt60OHbff1Nt_N-x34e9wDTFcW8aD2DH1w_h7k_6g_uwbGaLs-iEHFkpzmhIm7UX77cnila1-Hjdfhazr-hpdSrFh-s1J5uIua1L8W7V-EZwqyvp3Fg2ZBHUWj89gqvT2eV0HoVSC5GTcdFGzk4sJpMqyYgfKUTidTK2CTUpnnNFrmyM6Cud6AkHgJ5YRiU12oJYb6UyzB7Dbr2q_RMQceW8klZVxBQlXZhKiznZCqrUeelHkG4RMC7okHM5jBvTxSOxNj1shmEzAbYRHA4PfetlOP7d_YShHbqyhnZ3gyAxYUqaJKdwLMHMpbLkQNIqJK7kncxS9NJlI9hnGIeXBARHcLA1FBPme2NSyUJriS7U078_9RJuzy8X5-b89cXbZ3CHB9tv5BzAbrve-OdEbVp80Vn0D5XN8ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sEMG-Based+Gesture+Recognition+With+Embedded+Virtual+Hand+Poses+and+Adversarial+Learning&rft.jtitle=IEEE+access&rft.au=Hu%2C+Yu&rft.au=Wong%2C+Yongkang&rft.au=Dai%2C+Qingfeng&rft.au=Kankanhalli%2C+Mohan&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=104108&rft.epage=104120&rft_id=info:doi/10.1109%2FACCESS.2019.2930005&rft.externalDocID=8766972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon