sEMG-Based Gesture Recognition With Embedded Virtual Hand Poses and Adversarial Learning

To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 104108 - 104120
Main Authors Hu, Yu, Wong, Yongkang, Dai, Qingfeng, Kankanhalli, Mohan, Geng, Weidong, Li, Xiangdong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To improve the accuracy of surface electromyography (sEMG)-based gesture recognition, we present a novel hybrid approach that combines real sEMG signals with corresponding virtual hand poses. The virtual hand poses are generated by means of a proposed cross-modal association model constructed based on the adversarial learning to capture the intrinsic relationship between the sEMG signals and the hand poses. We report comprehensive evaluations of the proposed approach for both frame- and window-based sEMG gesture recognitions on seven-sparse-multichannel and four-high-density-benchmark databases. The experimental results show that the proposed approach achieves significant improvements in sEMG-based gesture recognition compared to existing works. For frame-based sEMG gesture recognition, the recognition accuracy of the proposed framework is increased by an average of +5.2% on the sparse multichannel sEMG databases and by an average of +6.7% on the high-density sEMG databases compared to the existing methods. For window-based sEMG gesture recognition, the state-of-the-art recognition accuracies on three of the high-density sEMG databases are already higher than 99%, i.e., almost saturated; nevertheless, we achieve a +0.2% improvement. For the remaining eight sEMG databases, the average improvement with the proposed framework for the window-based approach is +2.5%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2930005