A Deep and Scalable Unsupervised Machine Learning System for Cyber-Attack Detection in Large-Scale Smart Grids

Smart grid technology increases reliability, security, and efficiency of the electrical grids. However, its strong dependencies on digital communication technology bring up new vulnerabilities that need to be considered for efficient and reliable power distribution. In this paper, an unsupervised an...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 80778 - 80788
Main Authors Karimipour, Hadis, Dehghantanha, Ali, Parizi, Reza M., Choo, Kim-Kwang Raymond, Leung, Henry
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Smart grid technology increases reliability, security, and efficiency of the electrical grids. However, its strong dependencies on digital communication technology bring up new vulnerabilities that need to be considered for efficient and reliable power distribution. In this paper, an unsupervised anomaly detection based on statistical correlation between measurements is proposed. The goal is to design a scalable anomaly detection engine suitable for large-scale smart grids, which can differentiate an actual fault from a disturbance and an intelligent cyber-attack. The proposed method applies feature extraction utilizing symbolic dynamic filtering (SDF) to reduce computational burden while discovering causal interactions between the subsystems. The simulation results on IEEE 39, 118, and 2848 bus systems verify the performance of the proposed method under different operation conditions. The results show an accuracy of 99%, true positive rate of 98%, and false positive rate of less than 2%
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2920326