An Integrated Deep Ensemble-Unscented Kalman Filter for Sideslip Angle Estimation With Sensor Filtering Network

An integration scheme for sideslip angle estimation is proposed where a deep neural network and a simple kinematics-based model are combined in an unscented Kalman filter. The deep neural network contains two modules: a sensor filtering network designed to overcome the limitations of the kinematics-...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 149681 - 149689
Main Authors Kim, Dongchan, Kim, Gihoon, Choi, Seungwon, Huh, Kunsoo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An integration scheme for sideslip angle estimation is proposed where a deep neural network and a simple kinematics-based model are combined in an unscented Kalman filter. The deep neural network contains two modules: a sensor filtering network designed to overcome the limitations of the kinematics-based model and a deep ensemble network to estimate the sideslip angle and its uncertainty. Both networks use recurrent neural networks with long short-term memory to analyze sequential sensor data. The networks were trained using only input signal sets that can be obtained from on- board sensor measurements. The filtering network reduces the noise and bias of the input signals to match the model used for the unscented Kalman filter. Next, the initial estimate and its uncertainty obtained from the deep ensemble network are utilized as a new measurement in the unscented Kalman filter, inducing an adaptive measurement variance. The algorithm was verified through both simulation and experiment, and the results demonstrate the effectiveness of the proposed algorithm.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3125351