Clinical Decision Support System for Alcoholism Detection Using the Analysis of EEG Signals

Alcoholism is an adverse situation that changes the functioning of important part of nervous system which is neuron. This changes the functional behavior of alcoholic person. The diagnosis of this state is done with the help of EEG signals which gets modified with the electrical activity of the brai...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 61457 - 61461
Main Authors Jiajie, Liu, Narasimhan, K., Elamaran, V., Arunkumar, N., Solarte, Mario, Ramirez-Gonzalez, Gustavo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2018.2876135

Cover

More Information
Summary:Alcoholism is an adverse situation that changes the functioning of important part of nervous system which is neuron. This changes the functional behavior of alcoholic person. The diagnosis of this state is done with the help of EEG signals which gets modified with the electrical activity of the brain. The EEG data sets used in this paper are taken from the University of California at Irvine, Irvine, knowledge discovery and databases. A review on how the EEG signals get affected by the consumption of alcohol and the extraction of features from these signals help to differentiate alcoholic and uninfluenced people with the help of graphical user interface (GUI) is presented in this paper. GUI is an interface that showcases the features extracted from the raw EEG data and classifies the two different classes. This is achieved with the help of sample entropy, approximate entropy, mean, and standard deviation of raw EEG data collected from the electrodes frontal polar, frontal, and central. This GUI system is economical and efficient which is used as a proper clinical decision support system by clinicians and also helps rehabilitation centres in getting to know about the subject. Quadratic SVM gives a highest accuracy of 95% for the detection of alcoholic EEG signal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2876135