An Object Detection Algorithm for Rotary-Wing UAV Based on AWin Transformer

The increasing use of rotary-wing UAVs poses security risks, which makes image detection of rotary-wing UAVs a critical issue. This paper proposes an object detection algorithm for rotary-wing UAVs based on a transformer network. A self-attention mechanism is used to utilize the local contextual inf...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 13139 - 13150
Main Authors Fan, Yunlong, Li, Ou, Liu, Guangyi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The increasing use of rotary-wing UAVs poses security risks, which makes image detection of rotary-wing UAVs a critical issue. This paper proposes an object detection algorithm for rotary-wing UAVs based on a transformer network. A self-attention mechanism is used to utilize the local contextual information to extract the features of the rotary-wing UAV more effectively, which improves the accuracy of object detection. Meanwhile, a new self-attention mechanism is designed, in which the query vector and the key vector of the surrounding annular area are calculated separately and then concatenated by different heads of attention. Experimental results show that, compared with existing algorithms, the proposed algorithm improves the mean average precision by 1.7% on the proposed rotary-wing UAV dataset.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3147264