Reliable Security Algorithm for Drones Using Individual Characteristics From an EEG Signal
Unmanned aerial vehicles (UAVs) have been applied for both civilian and military applications; scientific research involving UAVs has encompassed a wide range of scientific study. However, communication with unmanned vehicles are subject to attack and compromise. Such attacks have been reported as e...
Saved in:
Published in | IEEE access Vol. 6; pp. 22976 - 22986 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Unmanned aerial vehicles (UAVs) have been applied for both civilian and military applications; scientific research involving UAVs has encompassed a wide range of scientific study. However, communication with unmanned vehicles are subject to attack and compromise. Such attacks have been reported as early as 2009, when a Predator UAV's video stream was compromised. Since UAVs extensively utilize autonomous behavior, it is important to develop an autopilot system that is robust to potential cyber-attack. In this paper, we present a biometric system to encrypt communication between a UAV and a computerized base station. This is accomplished by generating a key derived from a user's EEG Beta component. We first extract coefficients from Beta data using Legendre's polynomials. We perform encoding of the coefficients using Bose-Chaudhuri-Hocquenghem encoding and then generate a key from a hash function. The key is used to encrypt the communication between XBees. Also we have introduced scenarios where the communication is attacked. When communication with a UAV is attacked, a safety mechanism directs the UAV to a safe home location. This system has been validated on a commercial UAV under malicious attack conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2827362 |