Effect of Tannic Acid on the Protective Properties of the in situ Formed Pellicle

Objectives: In the present in situ/ex vivo study the impact of tannic acid on the erosion-protective properties of the enamel pellicle was tested. Additionally, the antiadherent and antibacterial effects of tannic acid were evaluated. Methods: The pellicle was formed in situ on bovine enamel samples...

Full description

Saved in:
Bibliographic Details
Published inCaries research Vol. 51; no. 1; pp. 34 - 45
Main Authors Hertel, Susann, Pötschke, Sandra, Basche, Sabine, Delius, Judith, Hoth-Hannig, Wiebke, Hannig, Matthias, Hannig, Christian
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objectives: In the present in situ/ex vivo study the impact of tannic acid on the erosion-protective properties of the enamel pellicle was tested. Additionally, the antiadherent and antibacterial effects of tannic acid were evaluated. Methods: The pellicle was formed in situ on bovine enamel samples fixed on individual splints worn by 6 subjects. Following 1 min of pellicle formation the volunteers rinsed for 10 min with tannic acid. After further oral exposure for 19 min, 109 min, and 8 h overnight, respectively, slabs were incubated in HCl ex vivo (pH 2.0, 2.3, 3.0) over 120 s. Subsequently, kinetics of calcium and phosphate release were measured photometrically. Samples after a 1-min fluoride mouth rinse as well as enamel samples with and without a 30-min in situ pellicle served as controls. Antiadherent effects were evaluated after a 1-min rinse with tannic acid and oral exposure of the slabs overnight. DAPI (4′,6-diamidino-2-phenylindole) combined with concanavalin A staining and live/dead staining was used for fluorescence microscopic visualization and quantification of adherent bacteria and glucans. Modification of the pellicle's ultrastructure by tannic acid was evaluated by transmission electron microscopy (TEM). Results: Tannic acid significantly improved the erosion-protective properties of the pellicle in a pH-dependent manner. Bacterial adherence and glucan formation on enamel were significantly reduced after rinses with tannic acid as investigated by fluorescence microscopy. TEM imaging indicated that rinsing with tannic acid yielded a sustainable modification of the pellicle; it was distinctly more electron dense. Conclusion: Tannic acid offers an effective and sustainable approach for the prevention of caries and erosion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-6568
1421-976X
1421-976X
DOI:10.1159/000451036