On Secrecy Analysis of DF Based Dual Hop Mixed RF-FSO Systems
In this paper, the secrecy performance of a mixed radio frequency-free space optical (RF-FSO) communication system that consists of a source (S), a relay (R), a destination (D), and an eavesdropper (E), is studied. In this system, it is assumed that the E can overhear the free space optical (FSO) li...
Saved in:
Published in | IEEE access Vol. 7; pp. 66725 - 66730 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, the secrecy performance of a mixed radio frequency-free space optical (RF-FSO) communication system that consists of a source (S), a relay (R), a destination (D), and an eavesdropper (E), is studied. In this system, it is assumed that the E can overhear the free space optical (FSO) link between R and D as it is close to D. It is further assumed that the radio frequency (RF) and FSO links experience Rayleigh and Gamma-Gamma fading, respectively. Considering atmospheric turbulence, pointing errors, two types of detection techniques, and decode-and-forward scheme, the closed-form expressions for the lower bound of secrecy outage probability and the probability of strictly positive secrecy capacity are derived. Monte Carlo simulation results are also presented to validate the accuracy of the derivations. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2914227 |