Inventory of riverine dissolved organic carbon in the Bohai Rim

Riverine carbon (C) composition and export are closely related to changes in the coastal environment and climate. Excessive C inputs from rivers to seas and their subsequent decomposition could result in harmful algal blooms and ecosystem degradation in the coastal sea. In this study, we explored th...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 293; p. 118601
Main Authors Sun, Cece, Liu, Jun, Li, Menglu, Zang, Jiaye, Wang, Lu, Wu, Wentao, Zhang, Aijun, Wang, Junjie, Ran, Xiangbin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Riverine carbon (C) composition and export are closely related to changes in the coastal environment and climate. Excessive C inputs from rivers to seas and their subsequent decomposition could result in harmful algal blooms and ecosystem degradation in the coastal sea. In this study, we explored the C transportation and composition in the 24 major rivers of the Bohai Sea (BS) Rim based on the investigation of dissolved organic carbon (DOC), carbon stable isotopes (δ13CDOC) and chromophoric dissolved organic matter (CDOM). The results showed that the riverine DOC concentrations were high (10.6 ± 6.04 mg/L) in the BS Rim compared with the DOC levels in the main rivers in Eastern China (4.98 ± 2.45 mg/L). The δ13CDOC ranged from −28.29‰ to −25.32‰ in the rivers of the BS Rim, suggesting that the DOC mainly originated from riverine plankton, soil organic matter mainly induced by C3 plants, and sewage. The excitation-emission matrix fluorescence spectroscopy of the CDOM indicated that a soluble, microbial by product-like material accounted for the largest proportion (approximately 40%) of CDOM in these rivers and that CDOM mainly originated from autochthonous riverine sources with high protein-like components. The rivers in the BS Rim transported approximately 0.55 Tg C of DOC to the BS each year, with more than 70% of reactive C based on the CDOM composition. The DOC yields in terms of unit drainage area transported from the small rivers to the BS were higher compared to those of the larger rivers in the world, which indicated that the small rivers in the Bohai Rim could be an important source of the C in the BS. This study would enrich our understanding of environmental evolution in coastal areas with numerous small rivers. [Display omitted] •Autochthonous production dominates the riverine DOC yield in the Bohai Rim.•The riverine CDOM in the Bohai Rim was mainly from aquatic and microbial sources.•Disproportionately large DOC export fluxes are observed from small rivers to the Bohai Sea.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2021.118601