Trends in Fenton and photo-Fenton processes for degradation of antineoplastic agents in water matrices: current knowledge and future challenges evaluation using a bibliometric and systematic analysis
Antineoplastic agents present potential hazards to human health and the environment. For this reason, these compounds have attracted a great deal of attention from researchers in the environmental sciences field. In order to help guide future research, it is important to understand the current state...
Saved in:
Published in | Environmental science and pollution research international Vol. 29; no. 28; pp. 42168 - 42184 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Antineoplastic agents present potential hazards to human health and the environment. For this reason, these compounds have attracted a great deal of attention from researchers in the environmental sciences field. In order to help guide future research, it is important to understand the current state of investigation of the occurrence of these microcontaminants and methods for their removal, especially focusing on Fenton and photo-Fenton processes applied to various aqueous matrices in which this class of pharmaceuticals is present. For this purpose, a systematic review of these topics was performed by bibliometric analysis of articles published during the last decade and available in the Scopus and Web of Science databases. This study enables visualization of the current panorama and trends in this field, providing a guide for future collaborative research and exchange of knowledge. Various strategies have been suggested to improve the efficiency of Fenton and photo-Fenton processes, mainly by means of the application of multiples additions of iron, the use of heterogeneous catalysts, and/or the use of chelating agents. Some studies have evaluated different radiation sources employed for photo-Fenton processes, such as solar and/or artificial radiation. In turn, the identification of transformation products generated by Fenton and photo-Fenton treatments, together with their evaluation by in silico (Q)SAR predictions or experimental toxicological bioassays, are related subjects that have been less reported in published works and that should be studied in depth. These subjects can support treatment evaluations that are more realistic, considering their limitations or potentials.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
ISSN: | 0944-1344 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-021-15938-4 |