An Estimation and Correction Combined Method for HVDC Model Parameters Identification

Identifying correct model parameters is important for actual power system operation and control. Though existing gradient decent method shows good timeliness, it would converge to wrong results because of inevitable linearization process when applied for strongly nonlinear models. To make up this sh...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 51020 - 51028
Main Authors Li, Feng, Wang, Qi, Hu, Jian-Xiong, Tang, Yi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Identifying correct model parameters is important for actual power system operation and control. Though existing gradient decent method shows good timeliness, it would converge to wrong results because of inevitable linearization process when applied for strongly nonlinear models. To make up this shortcoming, an estimation and correction combined method is proposed in this paper, by which the gradient method is expected to have better initial values for avoiding the local optimum trap. In the estimation process, pattern matching is utilized based on the constructed post-disturbance trajectory based typical parameters matching database. To construct the typical parameters matching database, correlation coefficient based forward and backward cluster method is applied, with which the typical parameters matching database can be updated conveniently and quickly. In the correction process, a novel comprehensive evaluation index is put forward for gradient decent method to evaluate parameter identification effects reasonably. Finally, the proposed combined parameter identification method is verified with standard high voltage direct current (HVDC) models together with parameter sensitivity analysis, and results show effectiveness.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3070081