Glass fibers with clay nanocomposite coating: Improved barrier resistance in alkaline environment

Coatings made from neat vinyl ester and nanoclay reinforced vinyl ester composites are applied onto individual glass fibers as well as rovings to evaluate their barrier resistance against alkali and moisture attack. The fibers coated with clay nanocomposites present a significantly less damage cause...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part A, Applied science and manufacturing Vol. 42; no. 12; pp. 2051 - 2059
Main Authors Liu, Ming-Yang, Zhu, Hong-Gang, Siddiqui, Naveed A., Leung, Christopher K.Y., Kim, Jang-Kyo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coatings made from neat vinyl ester and nanoclay reinforced vinyl ester composites are applied onto individual glass fibers as well as rovings to evaluate their barrier resistance against alkali and moisture attack. The fibers coated with clay nanocomposites present a significantly less damage caused by the diffusing alkali ions, giving rise to a much higher residual tensile strength after aging than the fibers without coating or those with a neat polymer coating. The static fatigue test performed on individual fibers verifies the advantage of using nanoclay composite to retard the corrosion process under the combined stress and alkaline environment. Similar beneficial effects of incorporating nanoclay on residual strength are identified for impregnated fiber bundles. The above observations confirm the excellent barrier characteristics of intercalated/exfoliated nanoclay in polymer that are applied in composite structures on both the microscopic and macroscopic scales.
Bibliography:http://dx.doi.org/10.1016/j.compositesa.2011.09.013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2011.09.013