Wave reflection and vortex evolution in Bragg scattering in real fluids

The vortex generation and dissipation accompanying Bragg scattering of water waves propagating over a series of submerged rectangular breakwaters are investigated both numerically and experimentally. The present model, which takes effects of non-linearity, viscosity and turbulence into consideration...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 88; pp. 508 - 519
Main Authors Hsu, Tai-Wen, Lin, Jian-Feng, Hsiao, Shih-Chun, Ou, Shan-Hwei, Babanin, Alexander V., Wu, Yun-Ta
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.09.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The vortex generation and dissipation accompanying Bragg scattering of water waves propagating over a series of submerged rectangular breakwaters are investigated both numerically and experimentally. The present model, which takes effects of non-linearity, viscosity and turbulence into consideration, is applied to simulate the entire vortex evolution process as water waves pass over a series of artificial rectangular bars. Particle image velocimetry is used to measure the velocity field in the vicinity of the bars. The numerical model is validated via a comparison with measured water surface elevations and velocity fields; the results show good agreement. The mechanism of vortex evolution and its influence on the interaction of water waves with submerged structures for cases with and without resonance are studied. The corresponding wave reflection coefficients for both cases are calculated and compared with experimental data and solutions based on linear wave theory. Examination of the turbulence properties shows that the turbulent intensity decreases on the weather side but increases on the lee side under the Bragg scattering conditions. •Bragg scattering are investigated both numerically and experimentally.•The COBRAS model is applied to simulate the entire vortex evolution process.•PIV is used to measure the velocity field in the vicinity of the bars.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2014.06.031