An Approach for Radicalization Detection Based on Emotion Signals and Semantic Similarity
The Internet has become an important tool for modern terrorist groups as a means of spreading their propaganda messages and recruitment purposes. Previous studies have shown that the analysis of social signs can help in the analysis, detection, and prediction of radical users. In this work, we focus...
Saved in:
Published in | IEEE access Vol. 8; pp. 17877 - 17891 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Internet has become an important tool for modern terrorist groups as a means of spreading their propaganda messages and recruitment purposes. Previous studies have shown that the analysis of social signs can help in the analysis, detection, and prediction of radical users. In this work, we focus on the analysis of affect signs in social media and social networks, which has not been yet previously addressed. The article contributions are: (i) a novel dataset to be used in radicalization detection works, (ii) a method for utilizing an emotion lexicon for radicalization detection, and (iii) an application to the radical detection domain of an embedding-based semantic similarity model. Results show that emotion can be a reliable indicator of radicalization, as well as that the proposed feature extraction methods can yield high-performance scores. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2967219 |