Unifying Structural and Semantic Similarities for Quality Assessment of DIBR-Synthesized Views

Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA m...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 59026 - 59036
Main Authors Mahmoudpour, Saeed, Schelkens, Peter
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA methods. Existing objective methods generally rely on the pixel-wise correspondences between the reference and distorted images, while view synthesis can introduce pixel shifts. DIBR distortions such as stretching and local hole-filling errors have different visual impacts from conventional distortions, challenging the existing IQA models. Here, we developed a Full-Reference (FR) objective IQA metric for synthesized views that significantly outperforms 2D IQA and the state-of-the-art DIBR IQA approaches. While the pixel misalignment between the reference and synthesized views is a big challenge for quality assessment, we deployed a Convolutional Neural Network (CNN) model to acquire a feature representation that inherently offers resilience to the imperceptible pixel shift between the compared images. Therefore, our model does not need accurate shift compensation. We deployed a set of quality-aware CNN features representing high-order statistics, to measure the structural similarity which is combined with a semantic similarity measure for accurate quality assessment. Moreover, prediction accuracy is improved by incorporating a visual saliency model acquired using the activations of the higher CNN layers. Experimental results indicate a significant performance gain (14.6% in terms of Spearman's rank-order correlation) compared to the top existing IQA model. The source code of the proposed metric is available at: https://gitlab.com/saeedmp/sequss .
AbstractList Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA methods. Existing objective methods generally rely on the pixel-wise correspondences between the reference and distorted images, while view synthesis can introduce pixel shifts. DIBR distortions such as stretching and local hole-filling errors have different visual impacts from conventional distortions, challenging the existing IQA models. Here, we developed a Full-Reference (FR) objective IQA metric for synthesized views that significantly outperforms 2D IQA and the state-of-the-art DIBR IQA approaches. While the pixel misalignment between the reference and synthesized views is a big challenge for quality assessment, we deployed a Convolutional Neural Network (CNN) model to acquire a feature representation that inherently offers resilience to the imperceptible pixel shift between the compared images. Therefore, our model does not need accurate shift compensation. We deployed a set of quality-aware CNN features representing high-order statistics, to measure the structural similarity which is combined with a semantic similarity measure for accurate quality assessment. Moreover, prediction accuracy is improved by incorporating a visual saliency model acquired using the activations of the higher CNN layers. Experimental results indicate a significant performance gain (14.6% in terms of Spearman's rank-order correlation) compared to the top existing IQA model. The source code of the proposed metric is available at: https://gitlab.com/saeedmp/sequss .
Author Mahmoudpour, Saeed
Schelkens, Peter
Author_xml – sequence: 1
  givenname: Saeed
  orcidid: 0000-0003-1006-1838
  surname: Mahmoudpour
  fullname: Mahmoudpour, Saeed
  email: saeed.mahmoudpour@vub.be
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
– sequence: 2
  givenname: Peter
  orcidid: 0000-0003-0908-1655
  surname: Schelkens
  fullname: Schelkens, Peter
  organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium
BookMark eNqFkU9r3DAQxU1JoGmaT5CLoGdv9ceWpeN2mzQLgdI6yTFibI9TLV4plWTK9tNHqUMovVSXEcP83pvhvSuOnHdYFOeMrhij-uN6s7lo2xWnnK8Ea7TU4k1xwpnUpaiFPPrr_7Y4i3FH81O5VTcnxf2ts-PBugfSpjD3aQ4wEXADaXEPLtmetHZvJwg2WYxk9IF8m2Gy6UDWMWKMe3SJ-JF83n76XrYHl35gtL9xIHcWf8X3xfEIU8Szl3pa3F5e3GyuyuuvX7ab9XXZV1SlsoFKomigwW5UFLTspYChobRilCuKqmeoaq4ljqCVkpzrAZDLWmHHQHTitNguuoOHnXkMdg_hYDxY86fhw4OBkK-Z0FCsqJT9IFVNK6xYV3WUymwCtM5aImt9WLQeg_85Y0xm5-fg8vqGyyZDlRA6T4llqg8-xoDjqyuj5jkXs-RinnMxL7lkSv9D9TZBst6lAHb6D3u-sBYRX910o_LylXgC8bychw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TMM_2024_3372837
Cites_doi 10.1167/jov.20.7.21
10.1007/s11263-015-0816-y
10.1109/TIP.2003.819861
10.3389/fncom.2017.00100
10.1523/JNEUROSCI.4139-15.2016
10.1109/TIP.2004.833105
10.1109/ICIP.2010.5652084
10.1109/CVPR.2018.00068
10.1109/JSTSP.2011.2166245
10.1109/TCSVT.2021.3112933
10.1109/ICIP.2007.4378926
10.1109/LSP.2020.3024109
10.1523/JNEUROSCI.3073-18.2019
10.1109/JSTSP.2012.2204723
10.1364/ao.404305
10.1109/TBC.2019.2906768
10.1109/ISM.2016.0067
10.1109/TMM.2017.2760062
10.1109/VCIP.2018.8698654
10.1117/12.524762
10.1109/TIP.2017.2781420
10.1113/jphysiol.1968.sp008455
10.1109/TMM.2021.3064240
10.1109/TPAMI.2020.3045810
10.1109/TBC.2015.2475697
10.1109/TBC.2013.2281658
10.1109/ICASSP.2017.7952356
10.1109/3DTV.2015.7169368
10.1038/nn.3402
10.1109/TIP.2005.859378
10.1109/TMM.2018.2875307
10.1109/CVPR.2016.90
10.1109/CVPR.2016.197
10.1109/QoMEX.2015.7148143
10.1109/TNNLS.2015.2461603
10.1109/TIP.2011.2109730
10.1109/MMUL.2016.64
10.1109/TII.2018.2888861
10.1109/ICIP.2011.6115662
10.1093/cercor/bhw282
10.1109/TIP.2013.2293423
10.1016/j.image.2020.116096
10.1109/TIP.2019.2919416
10.2352/ISSN.2470-1173.2016.16.HVEI-109
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3179693
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 59036
ExternalDocumentID oai_doaj_org_article_0e4066cd68504e41b4b00680ea051a33
10_1109_ACCESS_2022_3179693
9786804
Genre orig-research
GrantInformation_xml – fundername: Research Foundation—Flanders (FWO)
  grantid: G0B3521N
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-7a46e37a7ebf80a96c63ad700410280e8c1e85296efa9886229dae2658eb1a3b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:26:59 EDT 2025
Mon Jun 30 05:58:38 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Tue Jul 01 04:21:12 EDT 2025
Wed Aug 27 02:24:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-7a46e37a7ebf80a96c63ad700410280e8c1e85296efa9886229dae2658eb1a3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0908-1655
0000-0003-1006-1838
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9786804
PQID 2675044339
PQPubID 4845423
PageCount 11
ParticipantIDs ieee_primary_9786804
crossref_citationtrail_10_1109_ACCESS_2022_3179693
doaj_primary_oai_doaj_org_article_0e4066cd68504e41b4b00680ea051a33
crossref_primary_10_1109_ACCESS_2022_3179693
proquest_journals_2675044339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Tanimoto (ref42) 2008
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref41
Tanimoto (ref5) 2008
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref27
  doi: 10.1167/jov.20.7.21
– ident: ref29
  doi: 10.1007/s11263-015-0816-y
– ident: ref7
  doi: 10.1109/TIP.2003.819861
– ident: ref26
  doi: 10.3389/fncom.2017.00100
– ident: ref24
  doi: 10.1523/JNEUROSCI.4139-15.2016
– ident: ref41
  doi: 10.1109/TIP.2004.833105
– ident: ref1
  doi: 10.1109/ICIP.2010.5652084
– ident: ref28
  doi: 10.1109/CVPR.2018.00068
– ident: ref18
  doi: 10.1109/JSTSP.2011.2166245
– ident: ref39
  doi: 10.1109/TCSVT.2021.3112933
– ident: ref4
  doi: 10.1109/ICIP.2007.4378926
– ident: ref17
  doi: 10.1109/LSP.2020.3024109
– ident: ref25
  doi: 10.1523/JNEUROSCI.3073-18.2019
– ident: ref43
  doi: 10.1109/JSTSP.2012.2204723
– ident: ref2
  doi: 10.1364/ao.404305
– ident: ref11
  doi: 10.1109/TBC.2019.2906768
– ident: ref30
  doi: 10.1109/ISM.2016.0067
– ident: ref15
  doi: 10.1109/TMM.2017.2760062
– ident: ref16
  doi: 10.1109/VCIP.2018.8698654
– ident: ref6
  doi: 10.1117/12.524762
– volume-title: Reference Softwares for Depth Estimation and View Synthesis
  year: 2008
  ident: ref5
– ident: ref10
  doi: 10.1109/TIP.2017.2781420
– ident: ref23
  doi: 10.1113/jphysiol.1968.sp008455
– ident: ref32
  doi: 10.1109/TMM.2021.3064240
– ident: ref22
  doi: 10.1109/TPAMI.2020.3045810
– ident: ref46
  doi: 10.1109/TBC.2015.2475697
– ident: ref44
  doi: 10.1109/TBC.2013.2281658
– volume-title: Reference Softwares for Depth Estimation and View Synthesis
  year: 2008
  ident: ref42
– ident: ref9
  doi: 10.1109/ICASSP.2017.7952356
– ident: ref14
  doi: 10.1109/3DTV.2015.7169368
– ident: ref34
  doi: 10.1038/nn.3402
– ident: ref8
  doi: 10.1109/TIP.2005.859378
– ident: ref19
  doi: 10.1109/TMM.2018.2875307
– ident: ref21
  doi: 10.1109/CVPR.2016.90
– ident: ref45
  doi: 10.1109/CVPR.2016.197
– ident: ref13
  doi: 10.1109/QoMEX.2015.7148143
– ident: ref33
  doi: 10.1109/TNNLS.2015.2461603
– ident: ref37
  doi: 10.1109/TIP.2011.2109730
– ident: ref3
  doi: 10.1109/MMUL.2016.64
– ident: ref12
  doi: 10.1109/TII.2018.2888861
– ident: ref20
  doi: 10.1109/ICIP.2011.6115662
– ident: ref35
  doi: 10.1093/cercor/bhw282
– ident: ref36
  doi: 10.1109/TIP.2013.2293423
– ident: ref40
  doi: 10.1016/j.image.2020.116096
– ident: ref38
  doi: 10.1109/TIP.2019.2919416
– ident: ref31
  doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-109
SSID ssj0000816957
Score 2.2432182
Snippet Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59026
SubjectTerms Artificial neural networks
Convolutional neural networks
Deep neural networks
depth image-based rendering
Distortion
Feature extraction
Image quality
image semantics
Measurement
Misalignment
Pixels
Quality assessment
saliency map
Semantics
Similarity
Source code
Synthesis
visual quality assessment
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NT4MwFMAbs5MejDqN6DQ9eJQMaCntcZsuaqIHcWYnm7aUZIljJttl_vW-FkZmTPTiESgffX28D1p-D6ErawpwZEqFaaFFSLWJQ6UKMIbEEKNJypRfjPn4xO4m9GGaTrdKfbk1YTUeuBZcP7LgcpgpGE8jammsqfb1IqwCdVLEcz7B520lU94G85iJNGswQ3Ek-oPRCHoECWGSQJ6aCSbIN1fkif1NiZUfdtk7m_EB2m-iRDyon-4Q7djqCO1tsQO76A2iRf-PEs49AtbhM7CqCpzbOUhrZnA-m88gb_XIVAyxKa55GWs8aGmceFHim_vhc5ivK4gEl7NPW-BXhyc9RpPx7cvoLmyKJYSGRnwVZooySzKVWV3ySAlmGAGhO56Wmz213MSWu0lWWyrBIY9JRKFsAgEIWGtFNDlBnWpR2VOEDWyXcUZ4CdEJMVQlmU20iIw2NIN4MEDJRm7SNCRxV9DiXfqMIhKyFrZ0wpaNsAN03Z70UYM0fm8-dAPSNnUUbL8DdEM2uiH_0o0Add1wtheBjBmO0gD1NsMrmzd2KRPmQPeUEHH2H7c-R7uuO_XHmh7qgCbYCwhfVvrSa-oX36ToEg
  priority: 102
  providerName: Directory of Open Access Journals
Title Unifying Structural and Semantic Similarities for Quality Assessment of DIBR-Synthesized Views
URI https://ieeexplore.ieee.org/document/9786804
https://www.proquest.com/docview/2675044339
https://doaj.org/article/0e4066cd68504e41b4b00680ea051a33
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT9wwEMYtyqk9FChULC_50CNZkthx4uOygGgleugWxAnLdibSCsgisRzgr2fG8UblIdRbNkoiZz_H_saP3zD2A3yNHZm1SVE7nUjns8TaGhtD4YV3olA2LMY8-61Oz-Wvy-Jyie33e2EAICw-gyEdhrn8euYfaKiMaLCqIvjnJwzcur1a_XgKJZDQRRnBQlmqD0bjMb4DhoB5jpFpqZUWLzqfwOiPSVXetMShezlZYWeLgnWrSq6HD3M39E-vmI3_W_JV9jX6TD7qKsYaW4L2G_vyD31wnV2h3wy7nPgkQGQJwMFtW_MJ3OL_PfV8Mr2dYuQboKsc3S3viBuPfNTzPPms4Uc_D_8kk8cWveT99AlqfkGA0w12fnL8d3yaxHQLiZdpNU9KKxWI0pbgmiq1WnklUDYictH8K1Q-g4qmaaGxusJIKNe1hRwtDLb3VjjxnS23sxY2Gff4u8lKUTXob4SXNi8hdzr1zssSHeWA5QsdjI8sckqJcWNCTJJq04lnSDwTxRuw_f6muw7F8fHlhyRwfylxtMMJFMbEz9KkgIZG-VpVRSpBZk66kI0ELDZWVuBD1knM_iFRxwHbWVQXE7_5e5MrQuVLIfTW-3dts89UwG4AZ4cto7awi5Zm7vbCUMBeqNHPiw_z5A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT9wwEMYtBIe2B_qgFUtp8aFHsk1ix4mPy1K0PJZDFypOtWxnIq1askgsB_jrmXG8UV-quGWjJHL2c-xv_PgNY5_A19iRWZsUtdOJdD5LrK2xMRReeCcKZcNizOm5mlzKk6viao3t93thACAsPoMhHYa5_Hrh72iojGiwqiL45wb2-0XW7dbqR1QohYQuyogWylL9eTQe41tgEJjnGJuWWmnxW_cTKP0xrcpfbXHoYI5esumqaN26kh_Du6Ub-oc_qI1PLfsrthmdJh91VeM1W4P2DXvxC39wi31Hxxn2OfFZwMgSgoPbtuYzuMZ_fO75bH49x9g3YFc5-lveMTfu-agnevJFww-PD74ms_sW3eTt_AFq_o0Qp2_Z5dGXi_EkiQkXEi_TapmUVioQpS3BNVVqtfJKoHDE5KIZWKh8BhVN1EJjdYWxUK5rCzmaGGzxrXDiHVtvFy1sM-7xd5OVomrQ4QgvbV5C7nTqnZclesoBy1c6GB9p5JQU46cJUUmqTSeeIfFMFG_A9vubbjoYx_8vPyCB-0uJpB1OoDAmfpgmBbQ0yteqKlIJMnPShXwkYLG5sgIfskVi9g-JOg7Y7qq6mPjV35pcESxfCqF3_n3XHns2uZiembPj89P37DkVthvO2WXrqDN8QIOzdB9DvX4Ep7_2OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+Structural+and+Semantic+Similarities+for+Quality+Assessment+of+DIBR-Synthesized+Views&rft.jtitle=IEEE+access&rft.au=Mahmoudpour%2C+Saeed&rft.au=Schelkens%2C+Peter&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=59026&rft.epage=59036&rft_id=info:doi/10.1109%2FACCESS.2022.3179693&rft.externalDocID=9786804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon