Unifying Structural and Semantic Similarities for Quality Assessment of DIBR-Synthesized Views
Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA m...
Saved in:
Published in | IEEE access Vol. 10; pp. 59026 - 59036 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA methods. Existing objective methods generally rely on the pixel-wise correspondences between the reference and distorted images, while view synthesis can introduce pixel shifts. DIBR distortions such as stretching and local hole-filling errors have different visual impacts from conventional distortions, challenging the existing IQA models. Here, we developed a Full-Reference (FR) objective IQA metric for synthesized views that significantly outperforms 2D IQA and the state-of-the-art DIBR IQA approaches. While the pixel misalignment between the reference and synthesized views is a big challenge for quality assessment, we deployed a Convolutional Neural Network (CNN) model to acquire a feature representation that inherently offers resilience to the imperceptible pixel shift between the compared images. Therefore, our model does not need accurate shift compensation. We deployed a set of quality-aware CNN features representing high-order statistics, to measure the structural similarity which is combined with a semantic similarity measure for accurate quality assessment. Moreover, prediction accuracy is improved by incorporating a visual saliency model acquired using the activations of the higher CNN layers. Experimental results indicate a significant performance gain (14.6% in terms of Spearman's rank-order correlation) compared to the top existing IQA model. The source code of the proposed metric is available at: https://gitlab.com/saeedmp/sequss . |
---|---|
AbstractList | Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA methods. Existing objective methods generally rely on the pixel-wise correspondences between the reference and distorted images, while view synthesis can introduce pixel shifts. DIBR distortions such as stretching and local hole-filling errors have different visual impacts from conventional distortions, challenging the existing IQA models. Here, we developed a Full-Reference (FR) objective IQA metric for synthesized views that significantly outperforms 2D IQA and the state-of-the-art DIBR IQA approaches. While the pixel misalignment between the reference and synthesized views is a big challenge for quality assessment, we deployed a Convolutional Neural Network (CNN) model to acquire a feature representation that inherently offers resilience to the imperceptible pixel shift between the compared images. Therefore, our model does not need accurate shift compensation. We deployed a set of quality-aware CNN features representing high-order statistics, to measure the structural similarity which is combined with a semantic similarity measure for accurate quality assessment. Moreover, prediction accuracy is improved by incorporating a visual saliency model acquired using the activations of the higher CNN layers. Experimental results indicate a significant performance gain (14.6% in terms of Spearman's rank-order correlation) compared to the top existing IQA model. The source code of the proposed metric is available at: https://gitlab.com/saeedmp/sequss . |
Author | Mahmoudpour, Saeed Schelkens, Peter |
Author_xml | – sequence: 1 givenname: Saeed orcidid: 0000-0003-1006-1838 surname: Mahmoudpour fullname: Mahmoudpour, Saeed email: saeed.mahmoudpour@vub.be organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium – sequence: 2 givenname: Peter orcidid: 0000-0003-0908-1655 surname: Schelkens fullname: Schelkens, Peter organization: Department of Electronics and Informatics, Vrije Universiteit Brussel, Brussels, Belgium |
BookMark | eNqFkU9r3DAQxU1JoGmaT5CLoGdv9ceWpeN2mzQLgdI6yTFibI9TLV4plWTK9tNHqUMovVSXEcP83pvhvSuOnHdYFOeMrhij-uN6s7lo2xWnnK8Ea7TU4k1xwpnUpaiFPPrr_7Y4i3FH81O5VTcnxf2ts-PBugfSpjD3aQ4wEXADaXEPLtmetHZvJwg2WYxk9IF8m2Gy6UDWMWKMe3SJ-JF83n76XrYHl35gtL9xIHcWf8X3xfEIU8Szl3pa3F5e3GyuyuuvX7ab9XXZV1SlsoFKomigwW5UFLTspYChobRilCuKqmeoaq4ljqCVkpzrAZDLWmHHQHTitNguuoOHnXkMdg_hYDxY86fhw4OBkK-Z0FCsqJT9IFVNK6xYV3WUymwCtM5aImt9WLQeg_85Y0xm5-fg8vqGyyZDlRA6T4llqg8-xoDjqyuj5jkXs-RinnMxL7lkSv9D9TZBst6lAHb6D3u-sBYRX910o_LylXgC8bychw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_TMM_2024_3372837 |
Cites_doi | 10.1167/jov.20.7.21 10.1007/s11263-015-0816-y 10.1109/TIP.2003.819861 10.3389/fncom.2017.00100 10.1523/JNEUROSCI.4139-15.2016 10.1109/TIP.2004.833105 10.1109/ICIP.2010.5652084 10.1109/CVPR.2018.00068 10.1109/JSTSP.2011.2166245 10.1109/TCSVT.2021.3112933 10.1109/ICIP.2007.4378926 10.1109/LSP.2020.3024109 10.1523/JNEUROSCI.3073-18.2019 10.1109/JSTSP.2012.2204723 10.1364/ao.404305 10.1109/TBC.2019.2906768 10.1109/ISM.2016.0067 10.1109/TMM.2017.2760062 10.1109/VCIP.2018.8698654 10.1117/12.524762 10.1109/TIP.2017.2781420 10.1113/jphysiol.1968.sp008455 10.1109/TMM.2021.3064240 10.1109/TPAMI.2020.3045810 10.1109/TBC.2015.2475697 10.1109/TBC.2013.2281658 10.1109/ICASSP.2017.7952356 10.1109/3DTV.2015.7169368 10.1038/nn.3402 10.1109/TIP.2005.859378 10.1109/TMM.2018.2875307 10.1109/CVPR.2016.90 10.1109/CVPR.2016.197 10.1109/QoMEX.2015.7148143 10.1109/TNNLS.2015.2461603 10.1109/TIP.2011.2109730 10.1109/MMUL.2016.64 10.1109/TII.2018.2888861 10.1109/ICIP.2011.6115662 10.1093/cercor/bhw282 10.1109/TIP.2013.2293423 10.1016/j.image.2020.116096 10.1109/TIP.2019.2919416 10.2352/ISSN.2470-1173.2016.16.HVEI-109 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3179693 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 59036 |
ExternalDocumentID | oai_doaj_org_article_0e4066cd68504e41b4b00680ea051a33 10_1109_ACCESS_2022_3179693 9786804 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research Foundation—Flanders (FWO) grantid: G0B3521N |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-7a46e37a7ebf80a96c63ad700410280e8c1e85296efa9886229dae2658eb1a3b3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Mon Jun 30 05:58:38 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Tue Jul 01 04:21:12 EDT 2025 Wed Aug 27 02:24:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-7a46e37a7ebf80a96c63ad700410280e8c1e85296efa9886229dae2658eb1a3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0908-1655 0000-0003-1006-1838 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9786804 |
PQID | 2675044339 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9786804 crossref_citationtrail_10_1109_ACCESS_2022_3179693 doaj_primary_oai_doaj_org_article_0e4066cd68504e41b4b00680ea051a33 crossref_primary_10_1109_ACCESS_2022_3179693 proquest_journals_2675044339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Tanimoto (ref42) 2008 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref41 Tanimoto (ref5) 2008 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref27 doi: 10.1167/jov.20.7.21 – ident: ref29 doi: 10.1007/s11263-015-0816-y – ident: ref7 doi: 10.1109/TIP.2003.819861 – ident: ref26 doi: 10.3389/fncom.2017.00100 – ident: ref24 doi: 10.1523/JNEUROSCI.4139-15.2016 – ident: ref41 doi: 10.1109/TIP.2004.833105 – ident: ref1 doi: 10.1109/ICIP.2010.5652084 – ident: ref28 doi: 10.1109/CVPR.2018.00068 – ident: ref18 doi: 10.1109/JSTSP.2011.2166245 – ident: ref39 doi: 10.1109/TCSVT.2021.3112933 – ident: ref4 doi: 10.1109/ICIP.2007.4378926 – ident: ref17 doi: 10.1109/LSP.2020.3024109 – ident: ref25 doi: 10.1523/JNEUROSCI.3073-18.2019 – ident: ref43 doi: 10.1109/JSTSP.2012.2204723 – ident: ref2 doi: 10.1364/ao.404305 – ident: ref11 doi: 10.1109/TBC.2019.2906768 – ident: ref30 doi: 10.1109/ISM.2016.0067 – ident: ref15 doi: 10.1109/TMM.2017.2760062 – ident: ref16 doi: 10.1109/VCIP.2018.8698654 – ident: ref6 doi: 10.1117/12.524762 – volume-title: Reference Softwares for Depth Estimation and View Synthesis year: 2008 ident: ref5 – ident: ref10 doi: 10.1109/TIP.2017.2781420 – ident: ref23 doi: 10.1113/jphysiol.1968.sp008455 – ident: ref32 doi: 10.1109/TMM.2021.3064240 – ident: ref22 doi: 10.1109/TPAMI.2020.3045810 – ident: ref46 doi: 10.1109/TBC.2015.2475697 – ident: ref44 doi: 10.1109/TBC.2013.2281658 – volume-title: Reference Softwares for Depth Estimation and View Synthesis year: 2008 ident: ref42 – ident: ref9 doi: 10.1109/ICASSP.2017.7952356 – ident: ref14 doi: 10.1109/3DTV.2015.7169368 – ident: ref34 doi: 10.1038/nn.3402 – ident: ref8 doi: 10.1109/TIP.2005.859378 – ident: ref19 doi: 10.1109/TMM.2018.2875307 – ident: ref21 doi: 10.1109/CVPR.2016.90 – ident: ref45 doi: 10.1109/CVPR.2016.197 – ident: ref13 doi: 10.1109/QoMEX.2015.7148143 – ident: ref33 doi: 10.1109/TNNLS.2015.2461603 – ident: ref37 doi: 10.1109/TIP.2011.2109730 – ident: ref3 doi: 10.1109/MMUL.2016.64 – ident: ref12 doi: 10.1109/TII.2018.2888861 – ident: ref20 doi: 10.1109/ICIP.2011.6115662 – ident: ref35 doi: 10.1093/cercor/bhw282 – ident: ref36 doi: 10.1109/TIP.2013.2293423 – ident: ref40 doi: 10.1016/j.image.2020.116096 – ident: ref38 doi: 10.1109/TIP.2019.2919416 – ident: ref31 doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-109 |
SSID | ssj0000816957 |
Score | 2.2432182 |
Snippet | Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 59026 |
SubjectTerms | Artificial neural networks Convolutional neural networks Deep neural networks depth image-based rendering Distortion Feature extraction Image quality image semantics Measurement Misalignment Pixels Quality assessment saliency map Semantics Similarity Source code Synthesis visual quality assessment Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NT4MwFMAbs5MejDqN6DQ9eJQMaCntcZsuaqIHcWYnm7aUZIljJttl_vW-FkZmTPTiESgffX28D1p-D6ErawpwZEqFaaFFSLWJQ6UKMIbEEKNJypRfjPn4xO4m9GGaTrdKfbk1YTUeuBZcP7LgcpgpGE8jammsqfb1IqwCdVLEcz7B520lU94G85iJNGswQ3Ek-oPRCHoECWGSQJ6aCSbIN1fkif1NiZUfdtk7m_EB2m-iRDyon-4Q7djqCO1tsQO76A2iRf-PEs49AtbhM7CqCpzbOUhrZnA-m88gb_XIVAyxKa55GWs8aGmceFHim_vhc5ivK4gEl7NPW-BXhyc9RpPx7cvoLmyKJYSGRnwVZooySzKVWV3ySAlmGAGhO56Wmz213MSWu0lWWyrBIY9JRKFsAgEIWGtFNDlBnWpR2VOEDWyXcUZ4CdEJMVQlmU20iIw2NIN4MEDJRm7SNCRxV9DiXfqMIhKyFrZ0wpaNsAN03Z70UYM0fm8-dAPSNnUUbL8DdEM2uiH_0o0Add1wtheBjBmO0gD1NsMrmzd2KRPmQPeUEHH2H7c-R7uuO_XHmh7qgCbYCwhfVvrSa-oX36ToEg priority: 102 providerName: Directory of Open Access Journals |
Title | Unifying Structural and Semantic Similarities for Quality Assessment of DIBR-Synthesized Views |
URI | https://ieeexplore.ieee.org/document/9786804 https://www.proquest.com/docview/2675044339 https://doaj.org/article/0e4066cd68504e41b4b00680ea051a33 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT9wwEMYtyqk9FChULC_50CNZkthx4uOygGgleugWxAnLdibSCsgisRzgr2fG8UblIdRbNkoiZz_H_saP3zD2A3yNHZm1SVE7nUjns8TaGhtD4YV3olA2LMY8-61Oz-Wvy-Jyie33e2EAICw-gyEdhrn8euYfaKiMaLCqIvjnJwzcur1a_XgKJZDQRRnBQlmqD0bjMb4DhoB5jpFpqZUWLzqfwOiPSVXetMShezlZYWeLgnWrSq6HD3M39E-vmI3_W_JV9jX6TD7qKsYaW4L2G_vyD31wnV2h3wy7nPgkQGQJwMFtW_MJ3OL_PfV8Mr2dYuQboKsc3S3viBuPfNTzPPms4Uc_D_8kk8cWveT99AlqfkGA0w12fnL8d3yaxHQLiZdpNU9KKxWI0pbgmiq1WnklUDYictH8K1Q-g4qmaaGxusJIKNe1hRwtDLb3VjjxnS23sxY2Gff4u8lKUTXob4SXNi8hdzr1zssSHeWA5QsdjI8sckqJcWNCTJJq04lnSDwTxRuw_f6muw7F8fHlhyRwfylxtMMJFMbEz9KkgIZG-VpVRSpBZk66kI0ELDZWVuBD1knM_iFRxwHbWVQXE7_5e5MrQuVLIfTW-3dts89UwG4AZ4cto7awi5Zm7vbCUMBeqNHPiw_z5A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT9wwEMYtBIe2B_qgFUtp8aFHsk1ix4mPy1K0PJZDFypOtWxnIq1askgsB_jrmXG8UV-quGWjJHL2c-xv_PgNY5_A19iRWZsUtdOJdD5LrK2xMRReeCcKZcNizOm5mlzKk6viao3t93thACAsPoMhHYa5_Hrh72iojGiwqiL45wb2-0XW7dbqR1QohYQuyogWylL9eTQe41tgEJjnGJuWWmnxW_cTKP0xrcpfbXHoYI5esumqaN26kh_Du6Ub-oc_qI1PLfsrthmdJh91VeM1W4P2DXvxC39wi31Hxxn2OfFZwMgSgoPbtuYzuMZ_fO75bH49x9g3YFc5-lveMTfu-agnevJFww-PD74ms_sW3eTt_AFq_o0Qp2_Z5dGXi_EkiQkXEi_TapmUVioQpS3BNVVqtfJKoHDE5KIZWKh8BhVN1EJjdYWxUK5rCzmaGGzxrXDiHVtvFy1sM-7xd5OVomrQ4QgvbV5C7nTqnZclesoBy1c6GB9p5JQU46cJUUmqTSeeIfFMFG_A9vubbjoYx_8vPyCB-0uJpB1OoDAmfpgmBbQ0yteqKlIJMnPShXwkYLG5sgIfskVi9g-JOg7Y7qq6mPjV35pcESxfCqF3_n3XHns2uZiembPj89P37DkVthvO2WXrqDN8QIOzdB9DvX4Ep7_2OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+Structural+and+Semantic+Similarities+for+Quality+Assessment+of+DIBR-Synthesized+Views&rft.jtitle=IEEE+access&rft.au=Mahmoudpour%2C+Saeed&rft.au=Schelkens%2C+Peter&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=59026&rft.epage=59036&rft_id=info:doi/10.1109%2FACCESS.2022.3179693&rft.externalDocID=9786804 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |