Unifying Structural and Semantic Similarities for Quality Assessment of DIBR-Synthesized Views

Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA m...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 59026 - 59036
Main Authors Mahmoudpour, Saeed, Schelkens, Peter
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-view 3D content is subject to distortions during the process of depth image-based rendering (DIBR). Studies have shown the unreliable performance of the well-established image quality assessment (IQA) models for evaluation of DIBR-synthesized views which surge the need for more effective IQA methods. Existing objective methods generally rely on the pixel-wise correspondences between the reference and distorted images, while view synthesis can introduce pixel shifts. DIBR distortions such as stretching and local hole-filling errors have different visual impacts from conventional distortions, challenging the existing IQA models. Here, we developed a Full-Reference (FR) objective IQA metric for synthesized views that significantly outperforms 2D IQA and the state-of-the-art DIBR IQA approaches. While the pixel misalignment between the reference and synthesized views is a big challenge for quality assessment, we deployed a Convolutional Neural Network (CNN) model to acquire a feature representation that inherently offers resilience to the imperceptible pixel shift between the compared images. Therefore, our model does not need accurate shift compensation. We deployed a set of quality-aware CNN features representing high-order statistics, to measure the structural similarity which is combined with a semantic similarity measure for accurate quality assessment. Moreover, prediction accuracy is improved by incorporating a visual saliency model acquired using the activations of the higher CNN layers. Experimental results indicate a significant performance gain (14.6% in terms of Spearman's rank-order correlation) compared to the top existing IQA model. The source code of the proposed metric is available at: https://gitlab.com/saeedmp/sequss .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3179693