Multiple Ant Colony Optimization Based on Pearson Correlation Coefficient

Ant Colony Optimization algorithms have been successfully applied to solve the Traveling Salesman Problem (TSP). However, they still have a tendency to fall into local optima, mainly resulting from poor diversity, especially in those TSPs with a lot of cities. To address this problem, and further ob...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 61628 - 61638
Main Authors Zhu, Hongwei, You, Xiaoming, Liu, Sheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ant Colony Optimization algorithms have been successfully applied to solve the Traveling Salesman Problem (TSP). However, they still have a tendency to fall into local optima, mainly resulting from poor diversity, especially in those TSPs with a lot of cities. To address this problem, and further obtain a better result in big-scale TSPs, we propose an algorithm called Multiple Colonies Ant Colony Optimization Based on Pearson Correlation Coefficient (PCCACO). To improve the diversity, first, we introduce a novel single colony termed Unit Distance-Pheromone Operator, which along with two other classic ant populations: Ant Colony System and Max-Min Ant System, make the final whole algorithm. A Pearson correlation coefficient is further employed to erect multi-colony communication with an adaptive frequency. Besides that, an initialization is applied when the algorithm is stagnant, which helps it to jump out of the local optima. Finally, we render a dropout approach to reduce the running time. The extensive simulations in TSP demonstrate that our algorithm can get a better solution with a reasonable variation.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2915673