Multiple Ant Colony Optimization Based on Pearson Correlation Coefficient
Ant Colony Optimization algorithms have been successfully applied to solve the Traveling Salesman Problem (TSP). However, they still have a tendency to fall into local optima, mainly resulting from poor diversity, especially in those TSPs with a lot of cities. To address this problem, and further ob...
Saved in:
Published in | IEEE access Vol. 7; pp. 61628 - 61638 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ant Colony Optimization algorithms have been successfully applied to solve the Traveling Salesman Problem (TSP). However, they still have a tendency to fall into local optima, mainly resulting from poor diversity, especially in those TSPs with a lot of cities. To address this problem, and further obtain a better result in big-scale TSPs, we propose an algorithm called Multiple Colonies Ant Colony Optimization Based on Pearson Correlation Coefficient (PCCACO). To improve the diversity, first, we introduce a novel single colony termed Unit Distance-Pheromone Operator, which along with two other classic ant populations: Ant Colony System and Max-Min Ant System, make the final whole algorithm. A Pearson correlation coefficient is further employed to erect multi-colony communication with an adaptive frequency. Besides that, an initialization is applied when the algorithm is stagnant, which helps it to jump out of the local optima. Finally, we render a dropout approach to reduce the running time. The extensive simulations in TSP demonstrate that our algorithm can get a better solution with a reasonable variation. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2915673 |