Skeleton-based Dynamic Hand Gesture Recognition Using a Part-based GRU-RNN for Gesture-based Interface
Recent improvements in imaging sensors and computing units have led to the development of a range of image-based human-machine interfaces (HMIs). An important approach in this direction is the use of dynamic hand gestures for a gesture-based interface, and some methods have been developed to provide...
Saved in:
Published in | IEEE access Vol. 8; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent improvements in imaging sensors and computing units have led to the development of a range of image-based human-machine interfaces (HMIs). An important approach in this direction is the use of dynamic hand gestures for a gesture-based interface, and some methods have been developed to provide real-time hand skeleton generation from depth images for dynamic hand gesture recognition. Towards this end, we propose a skeleton-based dynamic hand gesture recognition method that divides geometric features into multiple parts and uses a gated recurrent unit-recurrent neural network (GRU-RNN) for each feature part. Because each divided feature part has fewer dimensions than an entire feature, the number of hidden units required for optimization is reduced. As a result, we achieved similar recognition performance as the latest methods with fewer parameters. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2980128 |