Adaptive Cooperative Diving of Saucer-Type Underwater Gliders Subject to Model Uncertainties and Input Constraints
This paper is concerned with the cooperative diving problem of homogenous under-actuated saucer-type autonomous underwater gliders subject to model uncertainties, input constraints as well as external disturbances. A modular back-stepping design method is used to design a robust adaptive cooperative...
Saved in:
Published in | IEEE access Vol. 7; pp. 60042 - 60054 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with the cooperative diving problem of homogenous under-actuated saucer-type autonomous underwater gliders subject to model uncertainties, input constraints as well as external disturbances. A modular back-stepping design method is used to design a robust adaptive cooperative diving controller for each glider. Especially, a kinematic control law is at first designed by employing a line-of-sight guidance principle, and a path variable update law is developed based on a synchronization strategy. Next, in order to identify the unknown dynamics of gliders, an estimation model is constructed by using a fuzzy approximation technique and a low-frequency learning scheme. Finally, it is proved that the closed-loop system is input-to-state stable by using a cascade stability analysis. The simulation results are given to demonstrate the effectiveness of the proposed method for cooperative diving of autonomous underwater gliders in a vertical plane. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2915160 |