BER Evaluation of Linear Detectors in Massive MIMO Systems Under Imperfect Channel Estimation Effects

New perspectives for wireless communications have brought new techniques, such as a very large number of antennas at a base station (BS) serving multiple user terminals (UTs) with a single antenna each, known as massive MIMO (M-MIMO). M-MIMO linear detectors, such as maximal-ratio combining (MRC), z...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 174482 - 174494
Main Authors Altamirano, Carlos Daniel, Minango, Juan, Mora, Henry Carvajal, De Almeida, Celso
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:New perspectives for wireless communications have brought new techniques, such as a very large number of antennas at a base station (BS) serving multiple user terminals (UTs) with a single antenna each, known as massive MIMO (M-MIMO). M-MIMO linear detectors, such as maximal-ratio combining (MRC), zero-forcing (ZF) or minimum-mean-square error (MMSE) can achieve excellent performance with low complexity due to the channel hardening property. However, imperfect channel estimation produces a penalty in the performance. An average bit error rate (BER) performance analysis over time-invariant channel is presented for M-MIMO systems under imperfect channel estimation in contrast with most of M-MIMO literature that uses the ergodic capacity approach. Closed-form expressions and bounds to evaluate the average BER are derived for MRC, ZF and MMSE detectors in a unicellular environment considering M-QAM modulation. Furthermore, an expression to evaluate the normalized signal-to-noise ratio (E b /N 0 ) penalty due to the imperfect channel estimation is presented. Montecarlo numerical simulations are used to verify the tightness of the derived equations which are a function of the number of BS antennas, number of users, coherence time interval, number of pilot symbols and the E b /N 0 of pilot and data symbols used for channel estimation and data detection.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2956828