Channel Estimation and Hybrid Precoding for Millimeter-Wave MIMO Systems: A Low-Complexity Overall Solution

To enable multi-stream transmission and increase the achievable rate, a hybrid digital/analog precoding structure is usually adopted in millimeter-wave (mmWave) MIMO systems. However, it may require matrix operations with a scale of antenna size, which is generally large in mmWave communications. Mo...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 5; pp. 16100 - 16110
Main Authors Xiao, Zhenyu, Xia, Pengfei, Xia, Xiang-Gen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To enable multi-stream transmission and increase the achievable rate, a hybrid digital/analog precoding structure is usually adopted in millimeter-wave (mmWave) MIMO systems. However, it may require matrix operations with a scale of antenna size, which is generally large in mmWave communications. Moreover, the channel estimation is also rather time-consuming due to the large number of antennas at both Tx/Rx sides. In this paper, a low-complexity overall channel estimation and hybrid precoding approach is proposed. In the channel estimation phase, a hierarchical multi-beam search scheme is proposed to fast acquire NS (the number of streams) multipath components (MPCs)/clusters with the highest powers. In the hybrid precoding phase, the analog and digital precodings are decoupled. The analog precoding is designed to steer along the NS acquired MPCs/clusters at both Tx/Rx sides, shaping an NS × NS baseband effective channel, while the digital precoding is performed in the baseband with the reduced-scale effective channel. Performance evaluations show that, compared with the state-of-the-art scheme, while achieving a close or even better performance when the number of radio frequency chains or streams is small, both the time complexity of the channel estimation and the computational complexity of the hybrid precoding are reduced.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2724037