A Study of Artificial Neural Network Technology Applied to Image Recognition for Underwater Images

In this study, the researchers developed holographic image software for the Polaris, a nongovernmental Taiwanese oceanographic research vessel. It is a survey vessel that was codeveloped through an industry-academia collaboration between National Kaohsiung University of Science and Technology and Dr...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 13844 - 13851
Main Authors Wu, Bo-Wen, Fang, Yi-Chin, Wen, Chan-Chuan, Chen, Chao-Hsien, Lee, Hsiao-Yi, Chang, Shun-Hsyung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, the researchers developed holographic image software for the Polaris, a nongovernmental Taiwanese oceanographic research vessel. It is a survey vessel that was codeveloped through an industry-academia collaboration between National Kaohsiung University of Science and Technology and Dragon Prince Hydro-Survey Enterprise Co. With a weight of 260 tons, length of 36.98 m, and width of 6.80 m, the vessel can travel at a speed of 11 knots. It has undergone underwater rescue and exploration operations and is therefore fairly experienced in such operations. When performing underwater exploration missions, survey vessels are often faced with interferences caused by factors such as current velocity; water temperature, refraction, and spectral conditions; climate; ocean current; presence of algae; and light reflection from schools of fish. Therefore, instantaneous image analysis is imperative for marine exploration. In accordance with the instantaneous recognition needs of the Polaris, the researchers developed artificial-neural-network-based recognition software for rapidly recognizing the category of a detected underwater object. Recognition of shapes in low-resolution underwater images was improved using a neural network resulting in an average recognition rate of 95%. Analysis of variance also indicated that the neural network yielded a significantly higher recognition rate than did manual recognition.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3144742