A p55 TNF Receptor Immunoadhesin Prevents T Cell-Mediated Intestinal Injury by Inhibiting Matrix Metalloproteinase Production

Anti-TNF-alpha Ab therapy has been shown to be of benefit in the treatment of active Crohn's disease, but the tissue-injuring processes in the gut mediated by TNF-alpha that might be inhibited by neutralizing Ab are unknown. In this work, we have used a p55 TNF receptor-human IgG fusion protein...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 160; no. 8; pp. 4098 - 4103
Main Authors Pender, Sylvia L. F, Fell, John M. E, Chamow, Steven M, Ashkenazi, Avi, MacDonald, Thomas T
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 15.04.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anti-TNF-alpha Ab therapy has been shown to be of benefit in the treatment of active Crohn's disease, but the tissue-injuring processes in the gut mediated by TNF-alpha that might be inhibited by neutralizing Ab are unknown. In this work, we have used a p55 TNF receptor-human IgG fusion protein (TNFR-IgG) to prevent the severe mucosal injury that ensues when lamina propria T cells in explant cultures of human fetal small intestine are directly activated with the lectin PWM. Following T cell activation and associated with mucosal injury, there is a marked elevation of soluble TNF-alpha in organ culture supernatants and a large increase in TNF-alpha mRNA transcripts. The addition of TNFR-IgG at the onset of cultures greatly reduced PWM-induced tissue injury, without inhibiting the increase in TNF-alpha and IFN-gamma transcripts seen following T cell activation. Mucosal injury in this model is mediated by endogenously-produced matrix metalloproteinases (MMPs). When TNFR-IgG was added to PWM-stimulated explants, there was a reduction in MMPs in the explant culture supernatants, especially stromelysin-1. Recombinant TNF-alpha and IL-1beta added directly to mucosal mesenchymal cell lines also caused an increase in MMP production, but only the former was inhibited by the TNFR-IgG. These results suggest that one of the ways in which TNF-alpha causes tissue injury in the gut is by stimulating mucosal mesenchymal cell to secrete matrix-degrading metalloproteinases. Neutralization of this activity should help maintain tissue integrity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.160.8.4098