Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening

From seminal evidence in the early 2000s, the opportunity to drive the specific knockdown of a protein of interest (POI) through pharmacological entities called Proteolysis Targeting Chimeric molecules, or PROTACs, has become a possible therapeutic option with the involvement of these compounds in c...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 12; p. 6630
Main Authors Pedrucci, Federica, Pappalardo, Claudia, Marzaro, Giovanni, Ferri, Nicola, Ferlin, Alberto, De Toni, Luca
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 14.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:From seminal evidence in the early 2000s, the opportunity to drive the specific knockdown of a protein of interest (POI) through pharmacological entities called Proteolysis Targeting Chimeric molecules, or PROTACs, has become a possible therapeutic option with the involvement of these compounds in clinical trials for cancers and autoimmune diseases. The fulcrum of PROTACs pharmacodynamics is to favor the juxtaposition between an E3 ligase activity and the POI, followed by the ubiquitination of the latter and its degradation by the proteasome system. In the face of an apparently modular design of these drugs, being constituted by an E3 ligase binding moiety and a POI-binding moiety connected by a linker, the final structure of an efficient PROTAC degradation enhancer often goes beyond the molecular descriptors known to influence the biological activity, specificity, and pharmacokinetics, requiring a rational improvement through appropriate molecular strategies. Starting from the description of the basic principles underlying the activity of the PROTACs to the evaluation of the strategies for the improvement of pharmacodynamics and pharmacokinetics and rational design, this review examines the molecular elements that have been shown to be effective in allowing the evolution of these compounds from interesting proof of concepts to potential aids of clinical interest.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23126630