Actor-Critic Reinforcement Learning Control of Non-Strict Feedback Nonaffine Dynamic Systems
The most focuses of the existing actor-critic reinforcement learning control (ARLC) are on dealing with continuous affine systems or discrete nonaffine systems. In this paper, I propose a new ARLC method for continuous nonaffine dynamic systems subject to unknown dynamics and external disturbances....
Saved in:
Published in | IEEE access Vol. 7; pp. 65569 - 65578 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The most focuses of the existing actor-critic reinforcement learning control (ARLC) are on dealing with continuous affine systems or discrete nonaffine systems. In this paper, I propose a new ARLC method for continuous nonaffine dynamic systems subject to unknown dynamics and external disturbances. A new input-to-state stable system is developed to establish an augmented dynamic system, from which I further get a strict-feedback affine model that is convenient for control designing based on a model transformation approach. The Nussbaum function is connected with a fuzzy approximation to devise an actor network whose tracking performance is further enhanced via strengthening signals generated by a fuzzy critic network. The stability of the closed-loop control system is guaranteed by the Lyapunov synthesis. Finally, the comparison simulation results are presented to verify the design. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2917141 |