Pansharpening Based on Variational Fractional-Order Geometry Model and Optimized Injection Gains

Pansharpening techniques fuse the complementary information from panchromatic (PAN) and multispectral (MS) images to obtain a high-resolution MS image. However, the majority of existing pansharpening techniques suffer from spectral distortion owing to the low correlation between the MS and PAN image...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 2128 - 2141
Main Authors Yang, Yong, Lu, Hangyuan, Huang, Shuying, Wan, Weiguo, Li, Luyi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pansharpening techniques fuse the complementary information from panchromatic (PAN) and multispectral (MS) images to obtain a high-resolution MS image. However, the majority of existing pansharpening techniques suffer from spectral distortion owing to the low correlation between the MS and PAN images, and difficulties in obtaining appropriate injection gains. To address these issues, this article presents a novel pansharpening method based on the variational fractional-order geometry (VFOG) model and optimized injection gains. Specifically, to improve the correlation between the PAN and MS images, the VFOG model is constructed to generate a refined PAN image with a similar spatial structure to the MS image, while maintaining the gradient information of the original PAN image. Furthermore, to obtain accurate injection gains, and considering that the vegetated and nonvegetated regions should be dissimilar, an optimized adaptive injection gain based on the normalized differential vegetation index is designed. The final pansharpened image is obtained by an injection model using the refined PAN image and optimized injection gains. Extensive experiments on various satellite datasets demonstrate that the proposed method offers superior spectral and spatial fidelity compared to existing state-of-the-art algorithms.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2022.3154642