Robust Secure Wireless Powered MISO Cognitive Mobile Edge Computing

Wireless power transfer (WPT) and cognitive radio (CR) are two promising techniques in designing mobile-edge computing (MEC) systems. In this paper, we study a robust secure wireless powered multiple-input single-output (MISO) cognitive MEC system, which integrates several techniques: physical-layer...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 62356 - 62366
Main Authors Liu, Boyang, Song, Jiajia, Wang, Jin, Sun, Haijian, Wang, Qun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wireless power transfer (WPT) and cognitive radio (CR) are two promising techniques in designing mobile-edge computing (MEC) systems. In this paper, we study a robust secure wireless powered multiple-input single-output (MISO) cognitive MEC system, which integrates several techniques: physical-layer security, WPT, CR, underlay spectrum sharing and MEC. Three optimization problems are formulated to minimize the total transmission power (TTP) of the primary transmitter (PT) and the secondary base station (SBS) under perfect channel state information (CSI) model, bounded CSI error model and the probabilistic CSI error model, respectively. The formulated problems are nonconvex and hard to solve. Three two-phase iterative optimization algorithms combined with Lagrangian dual, semidefinite relaxation (SDR), S-Procedure and Bernstein-type inequalities are proposed to jointly optimize the beamforming vectors of the PT and the SBS, the central processing unit (CPU) frequency and the transmit power of the MD. Simulation results are provided to verify the effectiveness of the proposed algorithms.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2984520