Domain Alignment Embedding Network for Sketch Face Recognition

Sketch face recognition refers to the process of matching sketches to photos. Recently, there has been a growing interest in using deep learning to learn discriminative features for sketch face recognition. However, the success of deep learning relies on the large-scale paired images to counteract e...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 872 - 882
Main Authors Guo, Yanan, Cao, Lin, Chen, Changwu, Du, Kangning, Fu, Chong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sketch face recognition refers to the process of matching sketches to photos. Recently, there has been a growing interest in using deep learning to learn discriminative features for sketch face recognition. However, the success of deep learning relies on the large-scale paired images to counteract effects such as over-fitting, since the amount of the paired training data is relatively small, the discriminative power of the deeply learned features will inevitably be reduced. This paper proposes a novel deep metric learning method termed domain alignment embedding network for sketch face recognition. Specifically, a training episode strategy is designed to alleviate the small sample problem, and a domain alignment embedding loss is proposed to guide the feature embedding network to learn discriminative features. Extensive experimental results on the UoM-SGFSv2 and PRIP-VSGC datasets are verified to show the effectiveness of the proposed method.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3047108