Full Operational Envelope Control of a Wind Turbine Using Model Predictive Control

This study presents a full operational envelope controller for a full nonlinear 5 MW Supergen exemplar wind turbine based on multivariable model predictive control (MPC). Below the rated wind speed, the primary objective of the controller is to maximize the energy capture. Above the rated wind speed...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 121940 - 121956
Main Authors Routray, Abhinandan, Hur, Sung-Ho
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a full operational envelope controller for a full nonlinear 5 MW Supergen exemplar wind turbine based on multivariable model predictive control (MPC). Below the rated wind speed, the primary objective of the controller is to maximize the energy capture. Above the rated wind speed, the controller maintains the rated power. The controller switches between control modes according to the prevailing wind speed to maintain control over the full envelope of operating regions. A linearized model is derived from a model of an exemplar 5 MW Supergen wind turbine in state-space form. The linearized model is then used to realize a feedback MPC (FB-MPC) and feedforward MPC (FF-MPC) to consider the lack and incorporation, respectively, of wind speed information. The switching strategy is tracked on the torque-speed plane. Simulations are performed at multiple wind speeds to evaluate the robustness and switching performances of the designed controllers by applying them to a full nonlinear 5 MW Matlab/SIMULINK model of the same exemplar Supergen wind turbine. Improved tracking is achieved over the full envelope with FF-MPC rather than FB-MPC. Simulation results are presented in the time and frequency domain in addition to the torque-speed plane demonstrating that the control performance is improved without an increase in the control activity (i.e., pitch action) of the turbine; that is, the controller's gain crossover frequency remains within the acceptable range, around 1 rad/s. Note that most work presented in the literature focus on specific wind speeds only; that is, either only below rated wind speed or above rated wind speed. In contrast, the controllers reported here cover the full envelope of operation regions, making this work more practical and novel.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3223087