OAM Mode Selection and Space-Time Coding for Atmospheric Turbulence Mitigation in FSO Communication

Orbital angular momentum (OAM) multiplexing has recently received considerable interest in free space optical (FSO) communications. Propagating OAM modes through free space may be subject to atmospheric turbulence (AT) distortions that cause intermodal crosstalk and power disparities between OAM mod...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 88049 - 88057
Main Authors Amhoud, El Mehdi, Trichili, Abderrahmen, Ooi, Boon S., Alouini, Mohamed-Slim
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Orbital angular momentum (OAM) multiplexing has recently received considerable interest in free space optical (FSO) communications. Propagating OAM modes through free space may be subject to atmospheric turbulence (AT) distortions that cause intermodal crosstalk and power disparities between OAM modes. In this paper, we are interested in multiple-input-multiple-output (MIMO) coherent FSO communication systems using the OAM. We propose a selection criterion for the OAM modes to minimize the impact of the AT. To further improve the obtained performance, we propose a space-time (ST) coding scheme at the transmitter. Through numerical simulations of the error probability, we show that the penalty from AT is completely absorbed for the weak AT regime, and considerable coding gains are obtained in the strong AT regime.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2925680