Determining the Capacity Limit of Inverter-Based Distributed Generators in High-Generation Areas Considering Transient and Frequency Stability

The responses of an inverter-based distributed generator (IBDG) to abnormal voltage and frequency are different from those of a conventional generator owing to the difference in the operating modes. In particular, the momentary cessation (MC) mode deteriorates the transient stability of normal power...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 34071 - 34079
Main Authors Shin, Heewon, Jung, Jaeyeop, Lee, Byongjun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The responses of an inverter-based distributed generator (IBDG) to abnormal voltage and frequency are different from those of a conventional generator owing to the difference in the operating modes. In particular, the momentary cessation (MC) mode deteriorates the transient stability of normal power systems by ceasing to provide active and reactive power to the grid. However, in a high-generation area, where a significant amount of generation is concentrated and where transient instability exists under a contingency, MC operation is conducive to the transient stability because the electrical output of critical generators increases to cover the local loads under this condition. This effect can cause frequency instability if a sizeable portion of the IBDG output is lost owing to the operating modes. To ensure transient and frequency stability, this study analyzed the effects of operating modes and generator tripping on the high-generation area. A method for determining the capacity limit of the IBDGs in the high-generation area was then developed to ensure power system stability. The effectiveness and feasibility of the proposed method were verified by conducting a case study on the Korean power system.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2974481