A novel hybrid random forest linear model approach for forecasting groundwater fluoride contamination

Groundwater quality in the Datong basin is threatened by high fluoride contamination. Laboratory analysis is a standard method for estimating groundwater quality parameters, which is expensive and time-consuming. Therefore, this paper proposes a hybrid random forest linear model (HRFLM) as a novel a...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 17; pp. 50661 - 50674
Main Authors Nafouanti, Mouigni Baraka, Li, Junxia, Nyakilla, Edwin E., Mwakipunda, Grant Charles, Mulashani, Alvin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Groundwater quality in the Datong basin is threatened by high fluoride contamination. Laboratory analysis is a standard method for estimating groundwater quality parameters, which is expensive and time-consuming. Therefore, this paper proposes a hybrid random forest linear model (HRFLM) as a novel approach for estimating groundwater fluoride contamination. Light gradient boosting (LightGBM), random forest (RF), and extreme gradient boosting (Xgboost) were also employed in comparison with HRFLM for predicting fluoride contamination in groundwater. 202 groundwater samples were collected to draw up the performance capability of several models in forecasting subsurface water fluoride contamination. The performance of the models was assessed utilizing the receiver operating characteristic (ROC) area under the curve (AUC) and the confusion matrix (CM). The CM results reveal that with nine predictor variables, the hybrid HRFLM achieved an accuracy of 95%, outperforming the Xgboost, LightGBM, and RF models, which attained 88%, 88%, and 85%, respectively. Likewise, the AUC results of the hybrid HRFLM show high performance with an AUC of 0.98 compared to Xgboost, LightGBM, and RF, which achieved an AUC of 0.95, 0.90, and 0.88, respectively. The study demonstrates that the HRFLM can be applied as an advanced approach for groundwater fluoride contamination prediction in the Datong basin and could be adopted in various areas facing a similar challenge.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-25886-w