Effect of High-k Passivation Layer on High Voltage Properties of GaN Metal-Insulator-Semiconductor Devices
In this paper, the GaN-based MIS-HEMTs with Si 3 N 4 single-layer passivation, Al 2 O 3 /SiN x bilayer passivation, and ZrO 2 /SiN x bilayer passivation are demonstrated. High-k dielectrics are adopted as the passivation layer on MIS-HEMTs to suppress the shallow traps on the GaN surface. Besides, h...
Saved in:
Published in | IEEE access Vol. 8; pp. 95642 - 95649 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, the GaN-based MIS-HEMTs with Si 3 N 4 single-layer passivation, Al 2 O 3 /SiN x bilayer passivation, and ZrO 2 /SiN x bilayer passivation are demonstrated. High-k dielectrics are adopted as the passivation layer on MIS-HEMTs to suppress the shallow traps on the GaN surface. Besides, high permittivity dielectrics passivated MIS-HEMTs also show an improved breakdown voltage characteristic, and that is explained by 2-D simulation analysis. The fabricated devices with high-k dielectrics/SiN x bilayer passivation exhibit higher power properties than the devices with plasma enhanced chemical vapor deposition-SiN x single layer passivation, including smaller current collapse and higher breakdown voltage. The Al 2 O 3 /SiN x passivated MIS-HEMTs exhibit a breakdown voltage of 1092 V, and the dynamic R on is only 1.14 times the static R on after off-state V DS stress of 150 V. On the other hand, the ZrO 2 /SiN x passivated MIS-HEMTs exhibit a higher breakdown voltage of 1207 V, and the dynamic R on is 1.25 times the static R on after off-state V DS stress of 150 V. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2995906 |