KnowEdu: A System to Construct Knowledge Graph for Education
Motivated by the vast applications of knowledge graph and the increasing demand in education domain, we propose a system, called KnowEdu , to automatically construct knowledge graph for education. By leveraging on heterogeneous data (e.g., pedagogical data and learning assessment data) from the educ...
Saved in:
Published in | IEEE access Vol. 6; pp. 31553 - 31563 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Motivated by the vast applications of knowledge graph and the increasing demand in education domain, we propose a system, called KnowEdu , to automatically construct knowledge graph for education. By leveraging on heterogeneous data (e.g., pedagogical data and learning assessment data) from the education domain, this system first extracts the concepts of subjects or courses and then identifies the educational relations between the concepts. More specifically, it adopts the neural sequence labeling algorithm on pedagogical data to extract instructional concepts and employs probabilistic association rule mining on learning assessment data to identify the relations with educational significance. We detail all the abovementioned efforts through an exemplary case of constructing a demonstrative knowledge graph for mathematics, where the instructional concepts and their prerequisite relations are derived from curriculum standards and concept-based performance data of students. Evaluation results show that the F1 score for concept extraction exceeds 0.70, and for relation identification, the area under the curve and mean average precision achieve 0.95 and 0.87, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2839607 |