Optimizing sleep/wake schedules in space: Sleep during chronic nocturnal sleep restriction with and without diurnal naps

Effective sleep/wake schedules for space operations must balance severe time constraints with allocating sufficient time for sleep in order to sustain high levels of neurobehavioral performance. Developing such schedules requires knowledge about the relationship between scheduled “time in bed” (TIB)...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 60; no. 4; pp. 354 - 361
Main Authors Mollicone, Daniel J., Van Dongen, Hans P.A., Dinges, David F.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Effective sleep/wake schedules for space operations must balance severe time constraints with allocating sufficient time for sleep in order to sustain high levels of neurobehavioral performance. Developing such schedules requires knowledge about the relationship between scheduled “time in bed” (TIB) and actual physiological sleep obtained. A ground-based laboratory study in N = 93 healthy adult subjects was conducted to investigate physiological sleep obtained in a range of restricted sleep schedules. Eighteen different conditions with restricted nocturnal anchor sleep, with and without diurnal naps, were examined in a response surface mapping paradigm. Sleep efficiency was found to be a function of total TIB per 24 h regardless of how the sleep was divided among nocturnal anchor sleep and diurnal nap sleep periods. The amounts of sleep stages 1+2 and REM showed more complex relationships with the durations of the anchor and nap sleep periods, while slow-wave sleep was essentially preserved among the different conditions of the experiment. The results of the study indicated that when sleep was chronically restricted, sleep duration was largely unaffected by whether the sleep was placed nocturnally or split between nocturnal anchor sleep periods and daytime naps. Having thus assessed that split-sleep schedules are feasible in terms of obtaining physiological sleep, further research will reveal whether these schedules and the associated variations in the distribution of sleep stages may be advantageous in mitigating neurobehavioral performance impairment in the face of limited time for sleep.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SourceType-Scholarly Journals-2
ObjectType-Conference Paper-1
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0094-5765
1879-2030
DOI:10.1016/j.actaastro.2006.09.022