Robust Digital Signal Recovery for LEO Satellite Communications Subject to High SNR Variation and Transmitter Memory Effects

This paper proposes a robust digital signal recovery (DSR) technique to tackle the high signal-to-noise ratio (SNR) variation and transmitter memory effects for broadband power efficient down-link in next-generation low Earth orbit (LEO) satellite constellations. The robustness against low SNR is ac...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; p. 1
Main Authors Chen, Qingyue, Zhang, Yufeng, Jalili, Feridoon, Wang, Zhugang, Huang, Yonghui, Wang, Yubo, Liu, Ying, Pedersen, Gert Frolund, Shen, Ming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a robust digital signal recovery (DSR) technique to tackle the high signal-to-noise ratio (SNR) variation and transmitter memory effects for broadband power efficient down-link in next-generation low Earth orbit (LEO) satellite constellations. The robustness against low SNR is achieved by concurrently integrating magnitude normalization and noise feature filtering using a filtering block built with one batch normalization (BN) layer and two bidirectional long short-term memory (BiLSTM) layers. Moreover, unlike existing deep neural network-based DSR techniques (DNN-DSR), which failed to effectively take into account the memory effects of radio-frequency power amplifiers (RF-PAs) in the model design, the proposed BiLSTM-DSR technique can extracts the sequential characteristics of the adjacent in-phase (I) and quadrature (Q) samples, and hence can obtain superior memory effects compensation compared with the DNN-DSR technique. Experimental validation results of the proposed BiLSTM-DSR with a 100 MHz bandwidth OFDM signal demonstrate an excellent performance of 11.83 dB and 9.4% improvement for adjacent channel power ratio (ACPR) and error vector magnitude (EVM), respectively. BiLSTM-DSR also outperforms the existing DNN-DSR technique in terms of the ACPR and EVM by 2.4 dB and 0.9%, which provides a promising solution for developing deep learning-assisted receivers for high-throughput LEO satellite networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3117517