A New Loss Function for CNN Classifier Based on Predefined Evenly-Distributed Class Centroids

With the development of convolutional neural networks (CNNs) in recent years, the network structure has become more and more complex and varied, and has achieved very good results in pattern recognition, image classification, object detection and tracking. For CNNs used for image classification, in...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 10888 - 10895
Main Authors Zhu, Qiuyu, Zhang, Pengju, Wang, Zhengyong, Ye, Xin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the development of convolutional neural networks (CNNs) in recent years, the network structure has become more and more complex and varied, and has achieved very good results in pattern recognition, image classification, object detection and tracking. For CNNs used for image classification, in addition to the network structure, more and more researches focus on the improvement of the loss function, so as to enlarge the inter-class feature differences, and reduce the intra-class feature variations as soon as possible. Besides the traditional Softmax, typical loss functions include L-Softmax, AM-Softmax, ArcFace, and Center loss, etc. Based on the concept of predefined evenly-distributed class centroids (PEDCC) in CSAE network, this paper proposes a PEDCC-based loss function called PEDCC-Loss, which can make the inter-class distance maximal and intra-class distance small enough in latent feature space. Multiple experiments on image classification and face recognition have proved that our method achieve the best recognition accuracy, and network training is stable and easy to converge. Code is available in https://github.com/ZLeopard/PEDCC-Loss.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2960065