Lightweight Wi-Fi Frame Detection for Licensed Assisted Access LTE
Licensed assisted access LTE (LAA-LTE) aggregates 5 GHz unlicensed bands with LTE's licensed bands via carrier aggregation, and adopts energy detection (ED)-based clear channel assessment (CCA) for protection of coexisting Wi-Fi devices. Since LAA-LTE requires the ED threshold should be set con...
Saved in:
Published in | IEEE access Vol. 7; pp. 77618 - 77628 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Licensed assisted access LTE (LAA-LTE) aggregates 5 GHz unlicensed bands with LTE's licensed bands via carrier aggregation, and adopts energy detection (ED)-based clear channel assessment (CCA) for protection of coexisting Wi-Fi devices. Since LAA-LTE requires the ED threshold should be set conservatively in the potential presence of Wi-Fi, the spatial spectrum reuse of the LAA-LTE will be much impaired. Such non-flexible thresholding has been introduced mainly due to ED's incapability of differentiating Wi-Fi frames from LTE frames. As a remedy, this paper proposes a lightweight but effective Wi-Fi frame detection method with which the LAA-LTE devices can capture a Wi-Fi preamble by only using the LAA-LTE's own time domain samples while incurring very small latency. Built upon the proposed method, we also propose the Wi-Fi energy tracking algorithm to identify the duration of a Wi-Fi frame, and a dynamic ED threshold selection algorithm. The proposed schemes were evaluated via the MATLAB simulations and USRP-based experiments, through which their efficacy has been confirmed, e.g., Wi-Fi frame detection probability up to 98.7%. Moreover, via extensive NS-3 based simulations with a multi-cell coexistence topology, we further revealed that the proposed mechanism not only enhances the spatial efficiency of the LAA-LTE achieving up to 23.68% more throughput than the legacy LAA-LTE but also protects coexisting Wi-Fi better. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2921724 |