State-of-charge estimation and uncertainty for lithium-ion battery strings

•A new state-of-charge (SOC) convention to accurately represent the state of the battery.•The best SOC estimation method is proposed and validated for a string of batteries.•Basic understanding of SOC from materials in electrodes to multi-cell strings is explained.•Error functions from five SOC esti...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 119; pp. 218 - 227
Main Authors Truchot, Cyril, Dubarry, Matthieu, Liaw, Bor Yann
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.04.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new state-of-charge (SOC) convention to accurately represent the state of the battery.•The best SOC estimation method is proposed and validated for a string of batteries.•Basic understanding of SOC from materials in electrodes to multi-cell strings is explained.•Error functions from five SOC estimation methods are evaluated and compared.•Uncertainty on SOC estimation was estimated, discussed and explained. The state-of-charge (SOC) estimation is of extreme importance for the reliability and safety of battery operation. How to estimate SOC and, to some degree, the SOC convention itself, is still a subject of great interest. Here a viable SOC convention valid for single cells and multi-cell strings is proposed and validated. Using a 3S1P string as an illustration in this work, the direct inference from a correct open circuit voltage versus SOC (OCV=f(SOC)) correspondence based on the proposed SOC convention is the best method for accurate SOC estimation among several possible approaches for strings. The thermodynamic aspect on this SOC convention is explained. Uncertainties in actual applications are also discussed. The understanding on this accurate SOC estimation approach shall facilitate reliable battery control and management.
AbstractList The state-of-charge (SOC) estimation is of extreme importance for the reliability and safety of battery operation. How to estimate SOC and, to some degree, the SOC convention itself, is still a subject of great interest. Here a viable SOC convention valid for single cells and multi-cell strings is proposed and validated. Using a 3S1P string as an illustration in this work, the direct inference from a correct open circuit voltage versus SOC (OCV=f(SOC)) correspondence based on the proposed SOC convention is the best method for accurate SOC estimation among several possible approaches for strings. The thermodynamic aspect on this SOC convention is explained. Uncertainties in actual applications are also discussed. The understanding on this accurate SOC estimation approach shall facilitate reliable battery control and management.
•A new state-of-charge (SOC) convention to accurately represent the state of the battery.•The best SOC estimation method is proposed and validated for a string of batteries.•Basic understanding of SOC from materials in electrodes to multi-cell strings is explained.•Error functions from five SOC estimation methods are evaluated and compared.•Uncertainty on SOC estimation was estimated, discussed and explained. The state-of-charge (SOC) estimation is of extreme importance for the reliability and safety of battery operation. How to estimate SOC and, to some degree, the SOC convention itself, is still a subject of great interest. Here a viable SOC convention valid for single cells and multi-cell strings is proposed and validated. Using a 3S1P string as an illustration in this work, the direct inference from a correct open circuit voltage versus SOC (OCV=f(SOC)) correspondence based on the proposed SOC convention is the best method for accurate SOC estimation among several possible approaches for strings. The thermodynamic aspect on this SOC convention is explained. Uncertainties in actual applications are also discussed. The understanding on this accurate SOC estimation approach shall facilitate reliable battery control and management.
Author Liaw, Bor Yann
Dubarry, Matthieu
Truchot, Cyril
Author_xml – sequence: 1
  givenname: Cyril
  surname: Truchot
  fullname: Truchot, Cyril
– sequence: 2
  givenname: Matthieu
  surname: Dubarry
  fullname: Dubarry, Matthieu
– sequence: 3
  givenname: Bor Yann
  orcidid: 0000-0001-7431-1977
  surname: Liaw
  fullname: Liaw, Bor Yann
  email: bliaw@hawaii.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28238986$$DView record in Pascal Francis
BookMark eNqFkU1r3DAQhkXYQDYffyH4UujFrka2ZRt6aFnSpCGQQ9KzGMujjRavvJW0Bf_7artpD73sSQN63mF4n0u2cJMjxm6BF8BBftoUuCNHfj0XgkNZgCh4Jc_YEtpG5B1Au2BLXnKZCwndBbsMYcM5FyD4kj2-RIyUTybXb-jXlFGIdovRTi5DN2R7p8lHtC7OmZl8Ntr4Zvfb_PDfY4zk5yxEb906XLNzg2Ogm_f3iv34dve6esifnu-_r74-5bribcxBoikF6KGSQIZDX6cRSNRDb9LFFbUgWkTsOyHNYKDBpqxJ9iB0jV2P5RX7eNy789PPfbpXbW3QNI7oaNoHJVIrZcUbKU6iUJcJ5ryBhH54RzFoHI1Hp21QO5_a8LMSrSjbrpWJk0dO-ykET-YfAlwdfKiN-utDHXwoECr5SMHP_wW1jX-Kjh7teDr-5RinVO0vS14FbSnZGawnHdUw2VMrfgNHIK3q
CODEN APENDX
CitedBy_id crossref_primary_10_3390_en14154506
crossref_primary_10_1016_j_pecs_2019_01_001
crossref_primary_10_1016_j_est_2019_100838
crossref_primary_10_3390_wevj14120325
crossref_primary_10_1155_2015_573184
crossref_primary_10_1149_2_0841414jes
crossref_primary_10_1002_er_5450
crossref_primary_10_1016_j_apenergy_2017_05_081
crossref_primary_10_1016_j_apenergy_2014_12_021
crossref_primary_10_1016_j_rser_2021_110801
crossref_primary_10_1016_j_jpowsour_2014_07_090
crossref_primary_10_3390_en9040255
crossref_primary_10_1016_S1452_3981_23_06692_0
crossref_primary_10_1149_1945_7111_ace21c
crossref_primary_10_1016_j_est_2021_103273
crossref_primary_10_1016_j_electacta_2022_140760
crossref_primary_10_1016_j_energy_2016_08_109
crossref_primary_10_1016_j_apenergy_2017_09_025
crossref_primary_10_1109_ACCESS_2021_3068776
crossref_primary_10_1002_est2_291
crossref_primary_10_1016_j_est_2023_109890
crossref_primary_10_1109_ACCESS_2018_2884844
crossref_primary_10_1016_j_est_2023_108047
crossref_primary_10_1016_j_est_2022_104307
crossref_primary_10_1016_j_jpowsour_2015_11_087
crossref_primary_10_1016_j_est_2023_106787
crossref_primary_10_1016_j_est_2020_101830
crossref_primary_10_1520_JTE20170558
crossref_primary_10_1088_2515_7655_ab979b
crossref_primary_10_1109_ACCESS_2020_2992206
crossref_primary_10_14801_jkiit_2023_21_5_49
crossref_primary_10_1016_j_apenergy_2017_05_176
crossref_primary_10_3390_en12030446
crossref_primary_10_3390_en8088244
crossref_primary_10_1016_j_jpowsour_2017_11_094
crossref_primary_10_1016_j_ijhydene_2017_09_169
crossref_primary_10_1007_s12239_016_0088_8
crossref_primary_10_1016_j_jpowsour_2015_08_091
crossref_primary_10_1016_j_jpowsour_2024_234590
crossref_primary_10_1007_s12239_021_0116_1
crossref_primary_10_1177_1550147719894526
crossref_primary_10_1016_j_jpowsour_2017_08_058
crossref_primary_10_1016_j_rser_2014_10_047
crossref_primary_10_1016_j_apenergy_2020_115153
crossref_primary_10_3390_s22155536
crossref_primary_10_3389_fenrg_2023_1087269
crossref_primary_10_1016_j_egyr_2019_12_008
crossref_primary_10_1155_2023_3648488
crossref_primary_10_1016_j_rser_2017_05_001
crossref_primary_10_1016_j_est_2018_11_012
crossref_primary_10_3390_en8087854
crossref_primary_10_3389_fenrg_2022_938467
crossref_primary_10_3390_electronics10131588
crossref_primary_10_1146_annurev_control_053018_023643
crossref_primary_10_1002_er_5374
crossref_primary_10_1016_j_est_2017_05_012
crossref_primary_10_1016_j_jpowsour_2016_04_125
crossref_primary_10_1149_1945_7111_ab6cf4
crossref_primary_10_3390_app112411797
crossref_primary_10_1016_j_apenergy_2017_08_124
crossref_primary_10_1016_j_est_2023_108777
crossref_primary_10_1016_j_jpowsour_2014_10_119
crossref_primary_10_3390_electronics9010152
crossref_primary_10_1016_j_est_2022_104860
crossref_primary_10_3390_electronics11111795
crossref_primary_10_1063_1_5046350
crossref_primary_10_1109_ACCESS_2020_3021745
crossref_primary_10_1016_j_jpowsour_2023_233777
crossref_primary_10_1016_j_est_2019_101031
crossref_primary_10_1063_1_4992815
crossref_primary_10_1016_j_apenergy_2016_06_069
crossref_primary_10_1016_j_est_2021_102424
crossref_primary_10_1016_j_jpowsour_2025_236185
crossref_primary_10_1016_j_jpowsour_2014_02_052
crossref_primary_10_3390_en16062925
crossref_primary_10_3390_electronics10030266
crossref_primary_10_1109_JPROC_2020_3047880
crossref_primary_10_1002_ese3_1477
crossref_primary_10_1016_j_jpowsour_2017_10_092
crossref_primary_10_1016_j_apenergy_2015_01_120
crossref_primary_10_1016_j_jpowsour_2017_03_010
crossref_primary_10_1149_2_0201506jes
crossref_primary_10_1149_1945_7111_ac5a1a
crossref_primary_10_1016_j_ifacol_2022_11_270
crossref_primary_10_1016_j_apenergy_2016_08_140
crossref_primary_10_1063_1_5029337
crossref_primary_10_1109_JESTPE_2021_3135019
crossref_primary_10_1016_j_est_2020_101489
crossref_primary_10_3390_batteries9110544
crossref_primary_10_1016_j_est_2016_09_008
crossref_primary_10_1016_j_apenergy_2015_05_103
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_1016_j_apenergy_2015_09_048
crossref_primary_10_1016_j_apenergy_2014_09_027
crossref_primary_10_1016_j_jpowsour_2017_03_001
crossref_primary_10_1016_j_est_2024_114446
crossref_primary_10_3390_electronics6040102
crossref_primary_10_3390_wevj12010020
crossref_primary_10_1016_j_jechem_2024_01_040
crossref_primary_10_1038_s44359_024_00020_2
crossref_primary_10_1109_ACCESS_2019_2942213
crossref_primary_10_3390_en17081824
Cites_doi 10.1016/j.apenergy.2013.09.006
10.1016/j.apenergy.2013.07.008
10.1016/j.jpowsour.2012.10.060
10.1016/j.jpowsour.2012.07.016
10.1149/1.2133112
10.1016/j.jpowsour.2009.05.036
10.1149/2.063301jes
10.1016/j.jpowsour.2012.09.015
10.1016/j.jpowsour.2007.06.157
10.1016/j.jpowsour.2010.05.058
10.1016/j.apenergy.2011.08.002
10.1016/j.jpowsour.2011.08.077
10.1016/j.apenergy.2012.02.044
10.1149/2.088206jes
10.1016/j.jpowsour.2011.08.078
10.1016/j.jpowsour.2008.10.051
10.1016/j.apenergy.2011.08.005
10.1016/j.jpowsour.2006.10.046
10.1016/j.apenergy.2012.11.046
10.1016/j.jpowsour.2010.07.029
10.1002/er.1668
10.1016/j.jpowsour.2013.06.108
10.1016/S0378-7753(01)00560-2
10.1016/j.apenergy.2013.07.061
10.1016/j.jpowsour.2007.06.185
10.1149/1.2221767
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TA
7TB
8FD
F28
FR3
JG9
7S9
L.6
DOI 10.1016/j.apenergy.2013.12.046
DatabaseName CrossRef
Pascal-Francis
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
Materials Business File
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 227
ExternalDocumentID 28238986
10_1016_j_apenergy_2013_12_046
S0306261913010556
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
ABTAH
IQODW
7TA
7TB
8FD
F28
FR3
JG9
7S9
L.6
ID FETCH-LOGICAL-c408t-16af321cd461ef01b5cd41e25dbf1874e8128aaab926fdf17a735e6b12c5a9ba3
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Jul 11 03:21:26 EDT 2025
Thu Jul 10 19:05:23 EDT 2025
Wed Apr 02 07:15:07 EDT 2025
Tue Jul 01 03:05:22 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
Fri Feb 23 02:36:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords State function
BMS
Uncertainty
Battery strings
State-of-charge (SOC) estimation
Cell variability
Variability
Battery
Lithium
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-16af321cd461ef01b5cd41e25dbf1874e8128aaab926fdf17a735e6b12c5a9ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7431-1977
PQID 1531010071
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_2101340762
proquest_miscellaneous_1531010071
pascalfrancis_primary_28238986
crossref_primary_10_1016_j_apenergy_2013_12_046
crossref_citationtrail_10_1016_j_apenergy_2013_12_046
elsevier_sciencedirect_doi_10_1016_j_apenergy_2013_12_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dubarry, Svoboda, Hwu, Liaw (b0115) 2007; 165
Lu, Han, Li, Hua, Ouyang (b0005) 2013; 226
Hu, Youn, Chung (b0095) 2012; 92
Dubarry, Truchot, Liaw, Gering, Sazhin, Jamison (b0030) 2011; 196
Dubarry, Vuillaume, Liaw (b0010) 2010; 34
Piller, Perrin, Jossen (b0070) 2001; 96
Xiong, Sun, Gong, Gao (b0110) 2014; 113
Sepasi, Ghorbani, Liaw (b0100) 2014; 245
Jensen, Engelbrecht, Bernuy-Lopez (b0090) 2012; 159
Dubarry, Liaw (b0045) 2009; 194
Dubarry, Truchot, Liaw, Gering, Sazhin, Jamison (b0130) 2013; 160
Plett GL. Efficient battery pack state estimation using bar delta filtering. In: International battery, hybrid and fuel cell electric vehicle symposium. Stavenger, Norway; 2009. p. 1–8.
Zheng, Han, Lu, Li, Ouyang (b0085) 2013; 223
Dubarry, Svoboda, Hwu, Liaw (b0120) 2006; 9
USABC. Electric Vehicle Battery Test Procedures Manual. Glossary of battery and battery testing terminology for the USABC battery test procedures appendix F: USABC; 2009. p. 1–10.
He, Xiong, Guo (b0065) 2012; 89
Gering, Sazhin, Jamison, Michelbacher, Liaw, Dubarry (b0025) 2011; 196
Dai, Wei, Sun, Wang, Gu (b0060) 2012; 95
Dubarry, Liaw, Chen, Chyan, Han, Sie (b0040) 2011; 196
Dubarry, Truchot, Liaw (b0020) 2012; 219
Xiong, Sun, Chen, He (b0105) 2014; 113
Xing, He, Pecht, Tsui (b0080) 2014; 113
Tong, Same, Kootstra, Park (b0075) 2013; 104
Dubarry, Svoboda, Hwu, Liaw (b0050) 2007; 174
Dubarry, Truchot, Cugnet, Liaw, Gering, Sazhin (b0035) 2011; 196
Huggins (b0135) 2009
Weppner, Huggins (b0140) 1977; 124
Dubarry, Vuillaume, Liaw (b0015) 2009; 186
Dubarry, Liaw (b0145) 2007; 174
Huggins (10.1016/j.apenergy.2013.12.046_b0135) 2009
Dubarry (10.1016/j.apenergy.2013.12.046_b0035) 2011; 196
Dubarry (10.1016/j.apenergy.2013.12.046_b0050) 2007; 174
10.1016/j.apenergy.2013.12.046_b0125
Weppner (10.1016/j.apenergy.2013.12.046_b0140) 1977; 124
Xiong (10.1016/j.apenergy.2013.12.046_b0105) 2014; 113
Dubarry (10.1016/j.apenergy.2013.12.046_b0115) 2007; 165
Hu (10.1016/j.apenergy.2013.12.046_b0095) 2012; 92
Xiong (10.1016/j.apenergy.2013.12.046_b0110) 2014; 113
Gering (10.1016/j.apenergy.2013.12.046_b0025) 2011; 196
Jensen (10.1016/j.apenergy.2013.12.046_b0090) 2012; 159
10.1016/j.apenergy.2013.12.046_b0055
Dubarry (10.1016/j.apenergy.2013.12.046_b0015) 2009; 186
Tong (10.1016/j.apenergy.2013.12.046_b0075) 2013; 104
Xing (10.1016/j.apenergy.2013.12.046_b0080) 2014; 113
Lu (10.1016/j.apenergy.2013.12.046_b0005) 2013; 226
He (10.1016/j.apenergy.2013.12.046_b0065) 2012; 89
Sepasi (10.1016/j.apenergy.2013.12.046_b0100) 2014; 245
Dubarry (10.1016/j.apenergy.2013.12.046_b0145) 2007; 174
Zheng (10.1016/j.apenergy.2013.12.046_b0085) 2013; 223
Dubarry (10.1016/j.apenergy.2013.12.046_b0030) 2011; 196
Dubarry (10.1016/j.apenergy.2013.12.046_b0120) 2006; 9
Dubarry (10.1016/j.apenergy.2013.12.046_b0020) 2012; 219
Dubarry (10.1016/j.apenergy.2013.12.046_b0045) 2009; 194
Dubarry (10.1016/j.apenergy.2013.12.046_b0010) 2010; 34
Dai (10.1016/j.apenergy.2013.12.046_b0060) 2012; 95
Dubarry (10.1016/j.apenergy.2013.12.046_b0130) 2013; 160
Dubarry (10.1016/j.apenergy.2013.12.046_b0040) 2011; 196
Piller (10.1016/j.apenergy.2013.12.046_b0070) 2001; 96
References_xml – volume: 223
  start-page: 136
  year: 2013
  end-page: 146
  ident: b0085
  article-title: Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles
  publication-title: J Power Sources
– reference: USABC. Electric Vehicle Battery Test Procedures Manual. Glossary of battery and battery testing terminology for the USABC battery test procedures appendix F: USABC; 2009. p. 1–10.
– volume: 96
  start-page: 113
  year: 2001
  end-page: 120
  ident: b0070
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J Power Sources
– volume: 219
  start-page: 204
  year: 2012
  end-page: 216
  ident: b0020
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J Power Sources
– volume: 174
  start-page: 1121
  year: 2007
  end-page: 1125
  ident: b0050
  article-title: Capacity loss in rechargeable lithium cells during cycle life testing: the importance of determining state-of-charge
  publication-title: J Power Sources
– volume: 160
  year: 2013
  ident: b0130
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications: III. Effect of thermal excursions without prolonged thermal aging
  publication-title: J Electrochem Soc
– volume: 194
  start-page: 541
  year: 2009
  end-page: 549
  ident: b0045
  article-title: Identify capacity fading mechanism in a commercial LiFePO
  publication-title: J Power Sources
– volume: 186
  start-page: 500
  year: 2009
  end-page: 507
  ident: b0015
  article-title: From single cell model to battery pack simulation for Li-ion batteries
  publication-title: J Power Sources
– volume: 165
  start-page: 566
  year: 2007
  end-page: 572
  ident: b0115
  article-title: Capacity and power fading mechanism identification from a commercial cell evaluation
  publication-title: J Power Sources
– volume: 113
  start-page: 106
  year: 2014
  end-page: 115
  ident: b0080
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl Energy
– volume: 92
  start-page: 694
  year: 2012
  end-page: 704
  ident: b0095
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl Energy
– volume: 124
  start-page: 1569
  year: 1977
  end-page: 1578
  ident: b0140
  article-title: Determination of the kinetic parameters of mixed-conducting electrodes and application to the system LiSb
  publication-title: J Electrochem Soc
– volume: 196
  start-page: 3420
  year: 2011
  end-page: 3425
  ident: b0040
  article-title: Identifying battery aging mechanisms in large format Li ion cells
  publication-title: J Power Sources
– volume: 95
  start-page: 227
  year: 2012
  end-page: 237
  ident: b0060
  article-title: Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications
  publication-title: Appl Energy
– volume: 159
  start-page: A791
  year: 2012
  ident: b0090
  article-title: Measurements of electric performance and impedance of a 75 Ah NMC lithium battery module
  publication-title: J Electrochem Soc
– volume: 113
  start-page: 463
  year: 2014
  end-page: 476
  ident: b0105
  article-title: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles
  publication-title: Appl Energy
– volume: 196
  start-page: 3395
  year: 2011
  end-page: 3403
  ident: b0025
  article-title: Investigation of path dependence in commercial lithium-ion cells chosen for plug-in hybrid vehicle duty cycle protocols
  publication-title: J Power Sources
– volume: 245
  start-page: 337
  year: 2014
  end-page: 344
  ident: b0100
  article-title: A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
  publication-title: J Power Sources
– volume: 89
  start-page: 413
  year: 2012
  end-page: 420
  ident: b0065
  article-title: Online estimation of model parameters and state-of-charge of LiFePO
  publication-title: Appl Energy
– volume: 9
  year: 2006
  ident: b0120
  article-title: Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries
  publication-title: Electrochem Solid-State Lett
– volume: 104
  start-page: 740
  year: 2013
  end-page: 750
  ident: b0075
  article-title: Off-grid photovoltaic vehicle charge using second life lithium batteries: an experimental and numerical investigation
  publication-title: Appl Energy
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: b0005
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J Power Sources
– volume: 196
  start-page: 10328
  year: 2011
  end-page: 10335
  ident: b0035
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations
  publication-title: J Power Sources
– volume: 113
  start-page: 1421
  year: 2014
  end-page: 1433
  ident: b0110
  article-title: A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Appl Energy
– year: 2009
  ident: b0135
  article-title: Advanced batteries: materials science aspects
– volume: 34
  start-page: 216
  year: 2010
  end-page: 231
  ident: b0010
  article-title: Origins and accommodation of cell variations in Li-ion battery pack modeling
  publication-title: Int J Energy Res
– volume: 174
  start-page: 856
  year: 2007
  end-page: 860
  ident: b0145
  article-title: Development of a universal modeling tool for rechargeable lithium batteries
  publication-title: J Power Sources
– volume: 196
  start-page: 10336
  year: 2011
  end-page: 10343
  ident: b0030
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging
  publication-title: J Power Sources
– reference: Plett GL. Efficient battery pack state estimation using bar delta filtering. In: International battery, hybrid and fuel cell electric vehicle symposium. Stavenger, Norway; 2009. p. 1–8.
– volume: 113
  start-page: 1421
  year: 2014
  ident: 10.1016/j.apenergy.2013.12.046_b0110
  article-title: A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.006
– volume: 113
  start-page: 106
  year: 2014
  ident: 10.1016/j.apenergy.2013.12.046_b0080
  article-title: State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.07.008
– ident: 10.1016/j.apenergy.2013.12.046_b0055
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.046_b0005
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.060
– volume: 219
  start-page: 204
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.046_b0020
  article-title: Synthesize battery degradation modes via a diagnostic and prognostic model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.07.016
– volume: 124
  start-page: 1569
  year: 1977
  ident: 10.1016/j.apenergy.2013.12.046_b0140
  article-title: Determination of the kinetic parameters of mixed-conducting electrodes and application to the system LiSb
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2133112
– volume: 194
  start-page: 541
  year: 2009
  ident: 10.1016/j.apenergy.2013.12.046_b0045
  article-title: Identify capacity fading mechanism in a commercial LiFePO4 cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.05.036
– volume: 160
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.046_b0130
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications: III. Effect of thermal excursions without prolonged thermal aging
  publication-title: J Electrochem Soc
  doi: 10.1149/2.063301jes
– volume: 223
  start-page: 136
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.046_b0085
  article-title: Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.09.015
– volume: 174
  start-page: 856
  year: 2007
  ident: 10.1016/j.apenergy.2013.12.046_b0145
  article-title: Development of a universal modeling tool for rechargeable lithium batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.06.157
– volume: 196
  start-page: 3395
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.046_b0025
  article-title: Investigation of path dependence in commercial lithium-ion cells chosen for plug-in hybrid vehicle duty cycle protocols
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.05.058
– year: 2009
  ident: 10.1016/j.apenergy.2013.12.046_b0135
– volume: 92
  start-page: 694
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.046_b0095
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.002
– volume: 196
  start-page: 10328
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.046_b0035
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.08.077
– volume: 95
  start-page: 227
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.046_b0060
  article-title: Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.02.044
– volume: 159
  start-page: A791
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.046_b0090
  article-title: Measurements of electric performance and impedance of a 75 Ah NMC lithium battery module
  publication-title: J Electrochem Soc
  doi: 10.1149/2.088206jes
– volume: 196
  start-page: 10336
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.046_b0030
  article-title: Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2C cycle aging
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.08.078
– volume: 186
  start-page: 500
  year: 2009
  ident: 10.1016/j.apenergy.2013.12.046_b0015
  article-title: From single cell model to battery pack simulation for Li-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.10.051
– volume: 89
  start-page: 413
  year: 2012
  ident: 10.1016/j.apenergy.2013.12.046_b0065
  article-title: Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.005
– volume: 165
  start-page: 566
  year: 2007
  ident: 10.1016/j.apenergy.2013.12.046_b0115
  article-title: Capacity and power fading mechanism identification from a commercial cell evaluation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.10.046
– volume: 104
  start-page: 740
  year: 2013
  ident: 10.1016/j.apenergy.2013.12.046_b0075
  article-title: Off-grid photovoltaic vehicle charge using second life lithium batteries: an experimental and numerical investigation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.11.046
– volume: 196
  start-page: 3420
  year: 2011
  ident: 10.1016/j.apenergy.2013.12.046_b0040
  article-title: Identifying battery aging mechanisms in large format Li ion cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.07.029
– volume: 34
  start-page: 216
  year: 2010
  ident: 10.1016/j.apenergy.2013.12.046_b0010
  article-title: Origins and accommodation of cell variations in Li-ion battery pack modeling
  publication-title: Int J Energy Res
  doi: 10.1002/er.1668
– volume: 245
  start-page: 337
  year: 2014
  ident: 10.1016/j.apenergy.2013.12.046_b0100
  article-title: A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.06.108
– volume: 96
  start-page: 113
  year: 2001
  ident: 10.1016/j.apenergy.2013.12.046_b0070
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(01)00560-2
– volume: 113
  start-page: 463
  year: 2014
  ident: 10.1016/j.apenergy.2013.12.046_b0105
  article-title: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.07.061
– ident: 10.1016/j.apenergy.2013.12.046_b0125
– volume: 174
  start-page: 1121
  year: 2007
  ident: 10.1016/j.apenergy.2013.12.046_b0050
  article-title: Capacity loss in rechargeable lithium cells during cycle life testing: the importance of determining state-of-charge
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.06.185
– volume: 9
  year: 2006
  ident: 10.1016/j.apenergy.2013.12.046_b0120
  article-title: Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries
  publication-title: Electrochem Solid-State Lett
  doi: 10.1149/1.2221767
SSID ssj0002120
Score 2.4847453
Snippet •A new state-of-charge (SOC) convention to accurately represent the state of the battery.•The best SOC estimation method is proposed and validated for a string...
The state-of-charge (SOC) estimation is of extreme importance for the reliability and safety of battery operation. How to estimate SOC and, to some degree, the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 218
SubjectTerms Applied sciences
Battery
Battery strings
BMS
Cell variability
Conventions
Direct energy conversion and energy accumulation
electric power
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Exact sciences and technology
lithium batteries
Lithium-ion batteries
Management
Open circuit voltage
Product safety
State function
State-of-charge (SOC) estimation
Strings
thermodynamics
Uncertainty
Title State-of-charge estimation and uncertainty for lithium-ion battery strings
URI https://dx.doi.org/10.1016/j.apenergy.2013.12.046
https://www.proquest.com/docview/1531010071
https://www.proquest.com/docview/2101340762
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLCCEoIAojypIrKa1YzvxiKpWBUQXQGKz7MSBIkgr0g4s_HbOTkKpAHVgy-OcWD777nNy3x1CZ8KkQiRpihk3CWZMMywjG2FpmSadkPGS9X4zFIN7dvXAH1ZQt-bCuLDKyvaXNt1b6-pKuxrN9mQ0at86tOvwP1hhX-XRMdhZ5Gb5-cc8zINWqRlBGDvpbyzh53M9sZ5h50K8Qv9Z0AHh3x3U5kQXMGxZWe_ih-n2_qi_jbYqIBlclH3dQSs2b6CNb-kFG2i_N2exgWi1jItddOUhJh5n2CdKsoFLtVFyGAOdpwH4ujJSYPoeAKgNAKo_jWav2N03PiHne-DqfeSPxR667_fuugNcFVXACevEU0yEzkJKkpQJYrMOMRwOiaU8NZmrz2fB48daayOpyNKMRDoKuRWG0IRraXS4j1bzcW4PUECJkIZyHbNYMGGoiXRmaSiNlDyWNmkiXo-kSqqM467wxYuqQ8ueVa0B5TSgCFWggSZqf7WblDk3lraQtaLUwuxR4BiWtm0taPbrlbAZBTQXg8BprWoFa8_9UNG5Hc8KBd4CHuxQ2t8ysKUmIeyaBT38RyeP0Dqc-ZAhwo_R6vRtZk8ADU1Ny0_3Flq7uLweDD8BhhgL-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BeRgITeNLwDaWSXs1rR3biR8rVFS--gJIvFl24kDRlla0feC_5-w4HWibeNhbFJ8Ty2ff_Zzc_Q7gh7SllEVZEi5sQTg3nKjMZUQ5bmgv5aLJer8ayeEtP78Tdytw0ubC-LDKaPsbmx6sdbzTjbPZnY7H3WuPdj3-RyscqjyuwppnpxIdWOufXQxHS4PMIjsjyhPf4VWi8OOxmbqQZOejvNLwZdBj4b_7qM2pmeHMVU3Jiz-sd3BJp5_gY8SSSb8Z7hasuHobNl4xDG7D3uB3IhuKxp0824HzgDLJpCKBK8klnm2jSWNMTF0m6O6aYIH5c4K4NkG0_jBe_CK-3QZOzufEl_yo72e7cHs6uDkZklhXgRS8l88JlaZKGS1KLqmretQKvKSOidJWvkSfQ6efG2OsYrIqK5qZLBVOWsoKYZQ16R506knt9iFhVCrLhMl5Lrm0zGamcixVVimRK1ccgGhnUheRdNzXvvip2-iyR91qQHsNaMo0auAAust-04Z2490eqlWUfrOANPqGd_sevdHs8pV4HkVAl6PA91bVGref_6diajdZzDQ6DHywB2r_lsFTNU3x4CzZ4X8M8ht8GN5cXerLs9HFZ1jHlhBBRMUX6MyfFu4rgqO5PYqL_wWjWQ6p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-charge+estimation+and+uncertainty+for+lithium-ion+battery+strings&rft.jtitle=Applied+energy&rft.au=Truchot%2C+Cyril&rft.au=Dubarry%2C+Matthieu&rft.au=Liaw%2C+Bor+Yann&rft.date=2014-04-15&rft.issn=0306-2619&rft.volume=119+p.218-227&rft.spage=218&rft.epage=227&rft_id=info:doi/10.1016%2Fj.apenergy.2013.12.046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon