Biometric Recognition Using Multimodal Physiological Signals
In this paper, we address the problem of biometric recognition using the multimodal physiological signals. To this end, four different signals are considered: heart rate (HR), breathing rate (BR), palm electrodermal activity (P-EDA), and perinasal perspitation (PER-EDA). The proposed method consists...
Saved in:
Published in | IEEE access Vol. 7; pp. 83581 - 83588 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we address the problem of biometric recognition using the multimodal physiological signals. To this end, four different signals are considered: heart rate (HR), breathing rate (BR), palm electrodermal activity (P-EDA), and perinasal perspitation (PER-EDA). The proposed method consists of a convolutional neural network that exploits mono-dimensional convolutions (1D-CNN) and takes as input a window of the raw signals stacked along the channel dimension. The architecture and training hyperparameters of the proposed network are automatically optimized with the sequential model-based optimization. The experiments run on a publicly available dataset of multimodal signals acquired from 37 subjects in a controlled experiment on a driving simulator show that our method is able to reach a top-1 accuracy equal to 88.74% and a top-5 accuracy of 99.51% when a single model is used. The performance further increases to 90.54% and 99.69% for top-1 and top-5 accuracies, respectively, if an ensemble of models is used. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2923856 |