Penicillium rubens germination on desiccated and nutrient-depleted conditions depends on the water activity during sporogenesis

Fungal growth often appears in a surrounding where water and nutrients are scarce. The impact of this environment during sporogenesis on subsequent growth is often neglected. This study investigates the effect of water availability during sporogenesis on subsequent early growth. Therefore, a carbon-...

Full description

Saved in:
Bibliographic Details
Published inFungal biology Vol. 124; no. 12; pp. 1058 - 1067
Main Authors Ruijten, Philip, Huinink, Hendrik P., Adan, Olaf C.G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fungal growth often appears in a surrounding where water and nutrients are scarce. The impact of this environment during sporogenesis on subsequent growth is often neglected. This study investigates the effect of water availability during sporogenesis on subsequent early growth. Therefore, a carbon-depleted substrate was constructed. Humidity is then the only parameter of interest. The water conditions during sporogenesis, and during subsequent growth, were varied. This is a stressing environment: no carbon source is present, and water provided solely via the vapour. The lag time, tl, and initial growth rate, μfp, of the germ tubes were monitored. The effect of aw history on germination and initial growth depends on the RH of the environment. Only at low RH do spores produced at low aw have a smaller tl and higher μfp compared to those grown at high aw. This result was remarkably pronounced when the substrate was also made hydrophobic: growth only occurred when spores were developed at low aw and placed in high RH. Spores grown on lowered aw attract more water. It is hypothesized that this attraction affects subsequent growth behaviour, and is the reason why growth on hydrophobic glass only prevails in the condition of high RH and lowered aw history. We demonstrate the influence of cultivation conditions on germination, which becomes more pronounced in a more desiccated environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1878-6146
1878-6162
DOI:10.1016/j.funbio.2020.10.006