Development of a highly sensitive imaged cIEF immunoassay for studying AAV capsid protein charge heterogeneity

Post‐translational modifications (PTMs) of adeno‐associated virus (AAV) capsid proteins tune and regulate the AAV infective life cycle, which can impact the safety and efficacy of AAV gene therapy products. Many of these PTMs induce changes in protein charge heterogeneity, including deamidation, oxi...

Full description

Saved in:
Bibliographic Details
Published inElectrophoresis Vol. 44; no. 15-16; pp. 1258 - 1266
Main Authors Ramírez, Francisco, Wu, Jiaqi, Haitjema, Charles, Heger, Chris
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Post‐translational modifications (PTMs) of adeno‐associated virus (AAV) capsid proteins tune and regulate the AAV infective life cycle, which can impact the safety and efficacy of AAV gene therapy products. Many of these PTMs induce changes in protein charge heterogeneity, including deamidation, oxidation, glycation, and glycosylation. To characterize the charge heterogeneity of a protein, imaged capillary isoelectric focusing (icIEF) has become the gold standard method. We have previously reported an icIEF method with native fluorescence detection for denatured AAV capsid protein charge heterogeneity analysis. Although well suited for final products, the method does not have sufficient sensitivity for upstream, low‐concentration AAV samples, and lacks the specificity for capsid protein detection in complex samples like cell culture supernatants and cell lysates. In contrast, the combination of icIEF, protein capture, and immunodetection affords significantly higher sensitivity and specificity, addressing the challenges of the icIEF method. By leveraging different primary antibodies, the icIEF immunoassay provides additional selectivity and affords a detailed characterization of individual AAV capsid proteins. In this study, we describe an icIEF immunoassay method for AAV analysis that is 90 times more sensitive than native fluorescence icIEF. This icIEF immunoassay provides AAV stability monitoring, where changes in individual capsid protein charge heterogeneity can be observed in response to heat stress. When applied to different AAV serotypes, this method also provides serotype identity with reproducible quantification of VP protein peak areas and apparent isoelectric point (pI). Overall, the described icIEF immunoassay is a sensitive, reproducible, quantitative, specific, and selective tool that can be used across the AAV biomanufacturing process, especially in upstream process development where complex sample types are often encountered.
Bibliography:See the article online to view Figure 3 in color.
Color online
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0173-0835
1522-2683
DOI:10.1002/elps.202300039