A hidden Markov model for continuous longitudinal data with missing responses and dropout
We propose a hidden Markov model for multivariate continuous longitudinal responses with covariates that accounts for three different types of missing pattern: (I) partially missing outcomes at a given time occasion, (II) completely missing outcomes at a given time occasion (intermittent pattern), a...
Saved in:
Published in | Biometrical journal Vol. 65; no. 5; pp. e2200016 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a hidden Markov model for multivariate continuous longitudinal responses with covariates that accounts for three different types of missing pattern: (I) partially missing outcomes at a given time occasion, (II) completely missing outcomes at a given time occasion (intermittent pattern), and (III) dropout before the end of the period of observation (monotone pattern). The missing‐at‐random (MAR) assumption is formulated to deal with the first two types of missingness, while to account for the informative dropout, we rely on an extra absorbing state. Estimation of the model parameters is based on the maximum likelihood method that is implemented by an expectation‐maximization (EM) algorithm relying on suitable recursions. The proposal is illustrated by a Monte Carlo simulation study and an application based on historical data on primary biliary cholangitis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0323-3847 1521-4036 1521-4036 |
DOI: | 10.1002/bimj.202200016 |