Experimental study and numerical simulation for a storehouse fire accident

Full-scale experiment and numerical simulations are carried out on a shelf fire in a storehouse to study the ignition manner, the fire spread and the combustion characteristics. A computational fluid dynamics (CFD) model of fire-driven fluid flow, FDS (Fire Dynamics Simulator), is used to solve nume...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 46; no. 7; pp. 1445 - 1459
Main Authors Yang, Peizhong, Tan, Xun, Xin, Wang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Full-scale experiment and numerical simulations are carried out on a shelf fire in a storehouse to study the ignition manner, the fire spread and the combustion characteristics. A computational fluid dynamics (CFD) model of fire-driven fluid flow, FDS (Fire Dynamics Simulator), is used to solve numerically a form of the Navier–Stokes equations for fire. Ignition manner experiments with both cigarette ends and lighter are conducted first. Then a full-scale experiment on a shelf fire is performed. The temperatures are measured and the fire growth and spread process is analyzed. A numerical model is used to simulate the experiment; the temperatures, fire growth and heat release rate are studied. In numerical simulations, the grid size resolution is analyzed. The experimental results of temperatures and the fire growth and spread process are compared with the results of numerical simulations. It shows that the numerical results are in good agreement with the experimental results. The chimney effect is also observed in both the experiment and the simulation. These useful data can be helpful in the numerical reconstruction of the whole storehouse fire accident.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2011.01.012