Independent Component Analysis-Based Background Subtraction for Indoor Surveillance

In video surveillance, detection of moving objects from an image sequence is very important for target tracking, activity recognition, and behavior understanding. Background subtraction is a very popular approach for foreground segmentation in a still scene image. In order to compensate for illumina...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 18; no. 1; pp. 158 - 167
Main Authors TSAI, Du-Ming, LAI, Shia-Chih
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In video surveillance, detection of moving objects from an image sequence is very important for target tracking, activity recognition, and behavior understanding. Background subtraction is a very popular approach for foreground segmentation in a still scene image. In order to compensate for illumination changes, a background model updating process is generally adopted, and leads to extra computation time. In this paper, we propose a fast background subtraction scheme using independent component analysis (ICA) and, particularly, aims at indoor surveillance for possible applications in home-care and health-care monitoring, where moving and motionless persons must be reliably detected. The proposed method is as computationally fast as the simple image difference method, and yet is highly tolerable to changes in room lighting. The proposed background subtraction scheme involves two stages, one for training and the other for detection. In the training stage, an ICA model that directly measures the statistical independency based on the estimations of joint and marginal probability density functions from relative frequency distributions is first proposed. The proposed ICA model can well separate two highly-correlated images. In the detection stage, the trained de-mixing vector is used to separate the foreground in a scene image with respect to the reference background image. Two sets of indoor examples that involve switching on/off room lights and opening/closing a door are demonstrated in the experiments. The performance of the proposed ICA model for background subtraction is also compared with that of the well-known FastICA algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2008.2007558