Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants

Completion of both the mouse and human genome sequences in the private and public sectors has prompted comparison between the two species at multiple levels. This review summarizes the cytochrome P450 (CYP) gene superfamily. For the first time, we have the ability to compare complete sets of CYP gen...

Full description

Saved in:
Bibliographic Details
Published inPharmacogenetics (London) Vol. 14; no. 1; p. 1
Main Authors Nelson, David R, Zeldin, Darryl C, Hoffman, Susan M G, Maltais, Lois J, Wain, Hester M, Nebert, Daniel W
Format Journal Article
LanguageEnglish
Published England 01.01.2004
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Completion of both the mouse and human genome sequences in the private and public sectors has prompted comparison between the two species at multiple levels. This review summarizes the cytochrome P450 (CYP) gene superfamily. For the first time, we have the ability to compare complete sets of CYP genes from two mammals. Use of the mouse as a model mammal, and as a surrogate for human biology, assumes reasonable similarity between the two. It is therefore of interest to catalog the genetic similarities and differences, and to clarify the limits of extrapolation from mouse to human. Data-mining methods have been used to find all the mouse and human CYP sequences; this includes 102 putatively functional genes and 88 pseudogenes in the mouse, and 57 putatively functional genes and 58 pseudogenes in the human. Comparison is made between all these genes, especially the seven main CYP gene clusters. The seven CYP clusters are greatly expanded in the mouse with 72 functional genes versus only 27 in the human, while many pseudogenes are present; presumably this phenomenon will be seen in many other gene superfamily clusters. Complete identification of all pseudogene sequences is likely to be clinically important, because some of these highly similar exons can interfere with PCR-based genotyping assays. A naming procedure for each of four categories of CYP pseudogenes is proposed, and we encourage various gene nomenclature committees to consider seriously the adoption and application of this pseudogene nomenclature system.
ISSN:0960-314X
DOI:10.1097/00008571-200401000-00001